Skip to main content
Log in

Avoiding sports-related sudden cardiac death in children with congenital channelopathy

Recommendations for sports activities

Vermeidung des sportbezogenen plötzlichen Herztods bei Kindern mit angeborenen Ionenkanalerkrankungen

Empfehlungen für sportliche Aktivitäten

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

For the past few years, children affected by an inherited channelopathy have been counseled to avoid (recreational) sports activities and all competitive sports so as to prevent exercise-induced arrhythmia and sudden cardiac death. An increased understanding of the pathophysiological mechanisms, better anti-arrhythmic strategies, and, in particular, more epidemiological data on exercise-induced arrhythmia in active athletes with channelopathies have changed the universal recommendation of “no sports,” leading to revised, less strict, and more differentiated guidelines (published by the American Heart Association/American College of Cardiology in 2015). In this review, we outline the disease- and genotype-specific mechanisms of exercise-induced arrhythmia; give an overview of trigger-, symptom-, and genotype-dependent guidance in sports activities for children with long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), or short QT syndrome (SQTS); and highlight the novelties in the current guidelines compared with previous versions. While it is still recommended for patients with LQT1 and CPVT (even when asymptomatic) and all symptomatic LQTS patients (independent of genotype) to avoid any competitive and high-intensity sports, other LQTS patients successfully treated with anti-arrhythmic therapies and phenotype-negative genotype-positive patients may be allowed to perform sports at different activity levels – provided they undergo regular, sophisticated evaluations to detect any changes in arrhythmogenic risk.

Zusammenfassung

Bis vor Kurzem wurde Kindern mit angeborenen Ionenkanalerkrankungen die Teilnahme am Freizeit- oder Wettkampfsport meist strikt untersagt, um sportinduzierte Arrhythmien und den plötzlichen Herztod zu vermeiden. Verbesserte pathophysiologische Erkenntnisse über die zugrunde liegenden Erkrankungen, Fortschritte in der antiarrhythmischen Therapie und insbesondere epidemiologische Erfahrungen mit Rhythmusereignissen bei aktiven Athleten mit Ionenkanalerkrankungen haben zu weniger strengen, individualisierten Empfehlungen in den neuen amerikanischen Leitlinien der American Heart Association/des American College of Cardiology von 2015 geführt. Für die Beratung von Kindern mit Long-QT-Syndrom (LQTS), Brugada-Syndrom (BrS), katecholaminerger polymorpher ventrikulärer Tachykardie (CPVT) oder Short-QT-Syndrom (SQTS) beschreiben die Autoren die krankheits- und genotypspezifischen Mechanismen sportinduzierter Arrhythmien, geben einen Überblick über die Neuerungen im Vergleich zu älteren Leitlinien und erörtern die differenzierteren, trigger-, symptom- bzw. mutationsabhängigen Empfehlungen zu den einzelnen Krankheitsentitäten. Neben dem fortbestehenden Sportverbot im kompetitiven und hochintensiven Bereich für alle CPVT- und LQT1-Patienten sowie generell für alle symptomatischen LQTS-Patienten gibt es vor allem beim LQTS Patientengruppen, deren Sportverbot unter bestimmten Voraussetzungen gelockert werden kann. So können z. B. erfolgreich antiarrhythmisch behandelte und darunter asymptomatische LQTS-Patienten sowie mutations-positive phänotyp-negative LQTS-Patienten, die unter regelmäßiger Reevaluation ihres Risikoprofils von Spezialisten begleitet werden, durchaus zu sportlichen Aktivitäten zurückkehren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APD:

action potential duration

BrS:

Brugada syndrome

CPVT:

catecholaminergic polymorphic ventricular tachycardia

EAD:

early afterdepolarization

ICa,L :

depolarizing L‑type calcium current

ICD:

Implantable cardioverter defibrillator

IKs :

slowly activating delayed outward rectifying repolarizing potassium current

IK1 :

inward rectifying repolarizing potassium current

IKr :

rapidly activating delayed outward rectifying potassium current

LQTS:

long QT syndrome

SQTS:

short QT syndrome

RyR:

ryanodine receptor

SrSCD:

sports-related sudden cardiac death

References

  1. Priori SG, Blomström-Lundqvist AM, Mazzanti A et al (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 36:2793–2867

    Article  PubMed  Google Scholar 

  2. Maron BJ, Gohman TE, Aeppli D (1998) Prevalence of sudden cardiac death during competitive sports activities in Minnesota high school athletes. J Am Coll Cardiol 32:1881–1884

    Article  CAS  PubMed  Google Scholar 

  3. Bohm P, Scharhag J, Meyer T (2016) Data from a nationwide registry on sports-related sudden cardiac deaths in Germany. Eur J Prev Cardiol 23:649–656

    Article  PubMed  Google Scholar 

  4. Maron BJ (2015) Historical perspectives on sudden deaths in young athletes with evolution over 35 years. Am J Cardiol 116:1461–1468

    Article  PubMed  Google Scholar 

  5. Corrado D, Thiene G, Nava A et al (1990) Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med 89:588–596

    Article  CAS  PubMed  Google Scholar 

  6. Winkel BG, Risgaard B, Sadjadieh G et al (2014) Sudden cardiac death in children (1–18 years): symptoms and causes of death in a nationwide setting. Eur Heart J 35:868–875

    Article  PubMed  Google Scholar 

  7. Tester DJ, Medeiros-Domingo A, Will ML et al (2012) Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc 87:524–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Pelliccia A, Fagard R, Bjørnstad HH et al (2005) Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J 26(14):1422–1445

    Article  PubMed  Google Scholar 

  9. Lampert R, Olshansky B, Heidbuchel H et al (2013) Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry. Circulation 127:2021–2030

    Article  PubMed  Google Scholar 

  10. Hammond-Haley M, Patel RS, Providência R, Lambiase PD (2016) Exercise restrictions for patients with inherited cardiac conditions: Current guidelines, challenges and limitations. Int J Cardiol 209:234–241

    Article  PubMed  Google Scholar 

  11. Johnson JN, Ackerman MJ (2012) Competitive sports participation in athletes with congenital long QT syndrome. JAMA 308:764–765

    Article  CAS  PubMed  Google Scholar 

  12. Johnson JN, Ackerman MJ (2013) Return to play? Athletes with congenital long QT syndrome. Br J Sports Med 47:28–33

    Article  PubMed  Google Scholar 

  13. Aziz PF, Sweeten T, Vogel RL et al (2015) Sports participation in genotype positive children with long QT syndrome. JACC Clin Electrophysiol 1:62–70

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ackerman MJ, Zipes DP, Kovacs RJ et al (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 10: the cardiac channelopathies: A scientific statement from the American Heart Association and American College of Cardiology. Circulation 132:e326–9

    Article  PubMed  Google Scholar 

  15. Hager A, Bjarnason-Wehrens B, Oberhoffer R, et al (2015) Leitlinie Pädiatrische Kardiologie: Sport bei angeborenen Herzerkrankungen

  16. Poton R, Polito MD (2016) Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin Physiol Funct Imaging 36:231–236

    Article  PubMed  Google Scholar 

  17. Corrado D, Basso C, Schiavon M, Thiene G (2006) Does sports activity enhance the risk of sudden cardiac death? J Cardiovasc Med 7:228–233

    Article  Google Scholar 

  18. Heidbuchel H, Carrè F (2014) Exercise and competitive sports in patients with an implantable cardioverter-defibrillator. Eur Heart J 35:3097–3102

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz PJ, Priori SG, Spazzolini C et al (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103:89–95

    Article  CAS  PubMed  Google Scholar 

  20. Skeberdis VA, Jurevicius J, Fischmeister AR (1997) Beta-2 adrenergic activation of L‑type Ca++ current in cardiac myocytes. J Pharmacol Exp Ther 283:452–461

    CAS  PubMed  Google Scholar 

  21. Walsh KB, Begenisich TB, Kass RS (1988) Beta-adrenergic modulation in the heart. Independent regulation of K and Ca channels. Pflugers Arch 411:232–234

    Article  CAS  PubMed  Google Scholar 

  22. Liu GX, Choi B‑R, Ziv O et al (2012) Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits. J Physiol 590:1171–1180

    Article  PubMed  Google Scholar 

  23. Bian J‑S, Kagan A, McDonald TV (2004) Molecular analysis of PIP2 regulation of HERG and IKr. Am J Physiol Heart Circ Physiol 287:H2154–H2163

    Article  CAS  PubMed  Google Scholar 

  24. Kilborn MJ, Fedida D (1990) A study of the developmental changes in outward currents of rat ventricular myocytes. J Physiol 430:37–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Giustetto C, Scrocco C, Schimpf R et al (2015) Usefulness of exercise test in the diagnosis of short QT syndrome. Europace 17:628–634

    Article  PubMed  Google Scholar 

  26. Cheung CC, Laksman ZWM, Mellor G et al (2016) Exercise and inherited arrhythmias. Can J Cardiol 32:452–458

    Article  PubMed  Google Scholar 

  27. Mont L, Pelliccia A, Sharma S et al (2016) Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE. Europace 19(1):139–163

    PubMed  Google Scholar 

  28. Priori SG, Chen SRW (2011) Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 108:871–883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Moss AJ, Robinson JL, Gessman L et al (1999) Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 84:876–879

    Article  CAS  PubMed  Google Scholar 

  30. Ackerman MJ, Tester DJ, Porter CJ (1999) Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc 74:1088–1094

    Article  CAS  PubMed  Google Scholar 

  31. Sumitomo N (2016) Current topics in catecholaminergic polymorphic ventricular tachycardia. J Arrhythm 32:344–351

    Article  PubMed  Google Scholar 

  32. Dalal A, Czosek RJ, Kovach J et al (2016) Clinical presentation of pediatric patients at risk for sudden cardiac arrest. J Pediatr 177:191–196

    Article  PubMed  Google Scholar 

  33. Strong WB, Malina RM, Blimkie CJR et al (2005) Evidence based physical activity for school-age youth. J Pediatr 146:732–737

    Article  PubMed  Google Scholar 

  34. Avari Silva JN, Bromberg BI, Emge FK et al (2016) Implantable loop recorder monitoring for refining management of children with inherited arrhythmia syndromes. J Am Heart Assoc 5:e003632. doi:10.1161/JAHA.116.003632

    Article  PubMed Central  PubMed  Google Scholar 

  35. Benhorin J, Moss AJ, Bak M et al (2002) Variable expression of long QT syndrome among gene carriers from families with five different HERG mutations. Ann Noninvasive Electrocardiol 7:40–46

    Article  PubMed  Google Scholar 

  36. Saprungruang A, Vithessonthi K, La-Orkhun V et al (2015) Clinical presentation and course of long QT syndrome in Thai children. J Arrhythm 31:296–301

    Article  PubMed Central  PubMed  Google Scholar 

  37. Canpolat U, Bayazit Y, Aytemir K (2016) Brugada syndrome unmasked by heat exhaustion. Ann Noninvasive Electrocardiol. doi:10.1111/anec.12356

    Google Scholar 

  38. Lampert R (2016) Mental stress and ventricular arrhythmias. Curr Cardiol Rep 18:118

    Article  PubMed  Google Scholar 

  39. Zhao Y‑T, Valdivia CR, Gurrola GB et al (2015) Arrhythmogenic mechanisms in ryanodine receptor channelopathies. Sci China Life Sci 58:54–58

    Article  CAS  PubMed  Google Scholar 

  40. Odening KE, Koren G (2014) How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity. Heart Rhythm 11:2107–2115

    Article  PubMed Central  PubMed  Google Scholar 

  41. Priori SG, Wilde AA, Horie M et al (2013) Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 15:1389–14062

    Article  PubMed  Google Scholar 

  42. Priori S (2001) The long QT syndrome. Europace 3:16–27

    Article  CAS  PubMed  Google Scholar 

  43. Tester DJ, Ackerman MJ (2014) Genetics of long QT syndrome. Methodist Debakey Cardiovasc J 10:29–33

    Article  PubMed Central  PubMed  Google Scholar 

  44. Napolitano C, Bloise R, Priori SG (2006) Long QT syndrome and short QT syndrome: how to make correct diagnosis and what about eligibility for sports activity. J Cardiovasc Med 7:250–256

    Article  Google Scholar 

  45. Priori SG, Napolitano C, Schwartz PJ et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344

    Article  CAS  PubMed  Google Scholar 

  46. Sweeting J, Ingles J, Ball K, Semsarian C (2015) Challenges of exercise recommendations and sports participation in genetic heart disease patients. Circ Cardiovasc Genet 8:178–186

    Article  PubMed  Google Scholar 

  47. Zipes DP, Link MS, Ackerman MJ et al (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task force 9: arrhythmias and conduction defects: A scientific statement from the American Heart Association and American College of Cardiology. Circulation 132:e315–e325

    Article  PubMed  Google Scholar 

  48. Leenhardt A, Lucet V, Denjoy I et al (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7‑year follow-up of 21 patients. Circulation 91:1512–1519

    Article  CAS  PubMed  Google Scholar 

  49. Lieve KV, van der Werf C, Wilde AA (2016) Catecholaminergic polymorphic ventricular tachycardia. Circ J 80:1285–1291

    Article  PubMed  Google Scholar 

  50. Heiner JD, Bullard-Berent JH, Inbar S (2011) Deadly proposal: a case of catecholaminergic polymorphic ventricular tachycardia. Pediatr Emerg Care 27:1065–1068

    Article  PubMed  Google Scholar 

  51. Zipes DP, Ackerman MJ, Estes NA et al (2005) Task Force 7: arrhythmias. J Am Coll Cardiol 45(8):1354–1363

    Article  PubMed  Google Scholar 

  52. Watanabe H, Chopra N, Laver D et al (2009) Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 15:380–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. van der Werf C, Kannankeril PJ, Sacher F et al (2011) Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol 57:2244–2254

    Article  PubMed Central  PubMed  Google Scholar 

  54. Steinfurt J, Dechant M‑J, Böckelmann D (2015) High-dose flecainide with low-dose ß‑blocker therapy in catecholaminergic polymorphic ventricular tachycardia: A case report and review of the literature. J Cardiol Cases 11:10–13

    Article  Google Scholar 

  55. Ackerman MJ, Priori SG, Dubin A et al (2017) Beta-blocker therapy for long QT syndrome and catecholaminergic polymorphic ventricular tachycardia: Are all beta-blockers equivalent? Heart Rhythm 214(1):e41–e44. doi:10.1016/j.hrthm.2016.09.012

    Article  Google Scholar 

  56. Leren IS, Saberniak J, Majid E et al (2016) Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β‑blockers in patients with catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 13:433–440

    Article  PubMed  Google Scholar 

  57. Ostby SA, Bos JM, Owen HJ et al (2016) Competitive sports participation in patients with catecholaminergic polymorphic ventricular tachycardia. A single center’s early experience. JACC Clin Electrophysiol 2:253–262

    Article  Google Scholar 

  58. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20:1391–1396

    Article  CAS  PubMed  Google Scholar 

  59. Steinfurt J, Biermann J, Bode C, Odening KE (2015) The diagnosis, risk stratification, and treatment of brugada syndrome. Dtsch Arztebl Int 112:394–401

    PubMed Central  PubMed  Google Scholar 

  60. Sarquella-Brugada G, Campuzano O, Arbelo E et al (2016) Brugada syndrome: clinical and genetic findings. Genet Med 18:3–12

    Article  CAS  PubMed  Google Scholar 

  61. Antzelevitch C, Brugada P, Borggrefe M et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111(5):659–670

    Article  PubMed  Google Scholar 

  62. Miyazaki T, Mitamura H, Miyoshi S et al (1996) Autonomic and antiarrhythmic drug modulation of ST segment elevation in patients with Brugada syndrome. J Am Coll Cardiol 27:1061–1070

    Article  CAS  PubMed  Google Scholar 

  63. Amin AS, de Groot EAA, Ruijter JM et al (2009) Exercise-induced ECG changes in Brugada syndrome. Circ Arrhythm Electrophysiol 2:531–539

    Article  PubMed  Google Scholar 

  64. Makimoto H, Nakagawa E, Takaki H et al (2010) Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J Am Coll Cardiol 56:1576–1584

    Article  PubMed  Google Scholar 

  65. Masrur S, Memon S, Thompson PD (2015) Brugada syndrome, exercise, and exercise testing. Clin Cardiol 38:323–326

    Article  PubMed  Google Scholar 

  66. Kannankeril PJ, Le FK, Kadish AH, Goldberger JJ (2004) Parasympathetic effects on heart rate recovery after exercise. J Investig Med 52:394–401

    Article  PubMed  Google Scholar 

  67. Carlsson J, Erdogan A, Rolf A et al (2000) Recurrent syncope in a 34-year-old woman triathlete. Dtsch Med Wochenschr 125:1074–1078

    Article  CAS  PubMed  Google Scholar 

  68. Gaïta F, Giustetto C, Bianchi F et al (2003) Short QT Syndrome: a familial cause of sudden death. Circulation 108:965–970

    Article  PubMed  Google Scholar 

  69. Wolpert C, Schimpf R, Veltmann C, Borggrefe M (2007) Short QT syndrome. Herz 32:206–210

    Article  PubMed  Google Scholar 

  70. Giustetto C, Di Monte F, Wolpert C et al (2006) Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J 27:2440–2447

    Article  PubMed  Google Scholar 

  71. Villafañe J, Atallah J, Gollob MH et al (2013) Long-term follow-up of a pediatric cohort with short QT syndrome. J Am Coll Cardiol 61:1183–1191

    Article  PubMed  Google Scholar 

  72. Antzelevitch C, Pollevick GD, Cordeiro JM et al (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449

    Article  PubMed Central  PubMed  Google Scholar 

  73. Rudic B, Schimpf R, Borggrefe M (2014) Short QT syndrome – review of diagnosis and treatment. Arrhythm Electrophysiol Rev 3:76–79

    Article  PubMed Central  PubMed  Google Scholar 

  74. Brugada R, Hong K, Dumaine R et al (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109:30–35

    Article  CAS  PubMed  Google Scholar 

  75. Wolpert C, Schimpf R, Giustetto C et al (2005) Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol 16:54–58

    Article  PubMed Central  PubMed  Google Scholar 

  76. Mazzanti A, Kanthan A, Monteforte N et al (2014) Novel insight into the natural history of short QT syndrome. J Am Coll Cardiol 63:1300–1308

    Article  PubMed Central  PubMed  Google Scholar 

  77. Villafañe J, Young M‑L, Maury P et al (2009) Short QT syndrome in a pediatric patient. Pediatr Cardiol 30:846–850

    Article  PubMed  Google Scholar 

  78. Schimpf R, Veltmann C, Wolpert C, Borggrefe M (2009) Channelopathies: Brugada syndrome, long QT syndrome, short QT syndrome, and CPVT. Herz 34:281–288

    Article  PubMed  Google Scholar 

  79. Dhutia H, Malhotra A, Parpia S et al (2016) The prevalence and significance of a short QT interval in 18,825 low-risk individuals including athletes. Br J Sports Med 50:124–129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Odening MD.

Ethics declarations

Conflict of interest

C. N. Lang, J. Steinfurt, and K. E. Odening declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, C.N., Steinfurt, J. & Odening, K.E. Avoiding sports-related sudden cardiac death in children with congenital channelopathy. Herz 42, 162–170 (2017). https://doi.org/10.1007/s00059-017-4549-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4549-2

Keywords

Schlüsselwörter

Navigation