Skip to main content
Log in

Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy

Enzyme und Signalwege in der Pathogenese der alkoholischen Kardiomyopathie

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Owing to its acute psychotropic effects, ethanol is the most frequently consumed toxic agent worldwide. However, excessive alcohol intake results in an array of health, social, and economic consequences, which are related to its property as an addictive substance. It has been well established that exposure to high levels of alcohol for a long period leads to the onset and progression of nonischemic cardiomyopathy through direct toxic mechanisms of ethanol and its metabolite, acetaldehyde. Excessive alcohol ingestion causes myocardial damage including disruptions of the myofibrillar architecture and is associated with reduced myocardial contractility and decreased ejection volumes. Key features of alcoholic cardiomyopathy are cardiac hypertrophy and ventricular dilatation, and the disease is manifested mainly as cardiomegaly, congestive heart failure, and even cardiac death. Mechanisms that have been postulated to underlie the pathogenesis of alcoholic cardiomyopathy include apoptosis, mitochondrial alterations, acetaldehyde protein adduct formation, oxidative stress, and imbalances in fatty acid metabolism. In the following, we give a brief overview of the molecular effects of ethanol-metabolizing enzymes and their impact on myocardial signal transduction pathways.

Zusammenfassung

Aufgrund seiner akuten psychotropen Effekte ist Ethylalkohol eine der meistkonsumierten toxischen Substanzen weltweit, doch seine exzessive Aufnahme führt zu vielfältigen negativen gesundheitlichen, sozialen und ökonomischen Folgen. Es ist gut belegt, dass der längerfristige Konsum größerer Mengen von Alkohol mit der Entstehung und Progression einer nichtischämischen Kardiomyopathie einhergeht, die über direkte toxische Effekte des Ethanols und seines Metaboliten Azetylaldehyd vermittelt wird. Übermäßiger Alkoholkonsum verursacht myokardiale Schäden einschließlich Störungen der myofibrillären Architektur und ist mit einer verminderten myokardialen Kontraktilität und reduzierten Ejektionsvolumina assoziiert. Hauptmerkmale der alkoholinduzierten Kardiomyopathie sind kardiale Hypertrophie und ventrikuläre Dilatation; dementsprechend manifestiert sich die Erkrankung als Kardiomegalie und kongestive Herzinsuffizienz bis hin zum kardialen Tod. Als Mechanismen, die der Pathogenese der Alkoholkardiomyopathie zugrunde liegen, wurden Apoptose, mitochondriale Veränderungen, azetaldehydinduzierte Adduktbildung von Proteinen, oxidativer Stress sowie Ungleichgewichte im Fettstoffwechsel angenommen. Im Folgenden wird ein kurzer Überblick über die molekularen Effekte der beteiligten ethanolmetabolisierenden Enzyme und die von diesen ausgehenden Einflüsse auf myokardiale Signaltransduktionswege gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gavazzi A, De Maria R, Parolini M et al (2000) Alcohol abuse and dilated cardiomyopathy in men. Am J Cardiol 85:1114–1118

    Article  CAS  PubMed  Google Scholar 

  2. Diczfalusy MA, Björkhem I, Einarsson C et al (2001) Characterization of enzymes involved in formation of ethyl esters of long-chain fatty acids in humans. J Lipid Res 42:1025–1032

    CAS  PubMed  Google Scholar 

  3. Beckemeier ME, Bora PS (1998) Fatty acid ethyl esters: potentially toxic products of myocardial ethanol metabolism. J Mol Cell Cardiol 30:2487–2494

    Article  CAS  PubMed  Google Scholar 

  4. Yoerger DM, Best CA, McQuillan BM et al (2006) Rapid fatty acid ethyl ester synthesis by porcine myocardium upon ethanol infusion into the left anterior descending coronary artery. Am J Pathol 168:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lange LG, Sobel BE (1983) Mitochondrial dysfunction induced by fatty acid ethyl esters, myocardial metabolites of ethanol. J Clin Invest 72:724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li SY, Gilbert SA, Li Q et al (2009) Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. J Mol Cell Cardiol 47:247–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garaycoechea JI, Crossan GP, Langevin F et al (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571–575

    Article  CAS  PubMed  Google Scholar 

  8. Niederhut MS, Gibbons BJ, Perez-Miller S et al (2001) Three-dimensional structures of the three human class I alcohol dehydrogenases. Protein Sci 10:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Braun T, Bober E, Singh S et al (1987) Evidence for a signal peptide at the amino-terminal end of human mitochondrial aldehyde dehydrogenase. FEBS Lett 215:233–236

    Article  CAS  PubMed  Google Scholar 

  10. Raghunathan L, Hsu LC, Klisak I et al (1988) Regional localization of the human genes for aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Genomics 2:267–269

    Article  CAS  PubMed  Google Scholar 

  11. Hsu LC, Bendel RE, Yoshida A (1988) Genomic structure of the human mitochondrial aldehyde dehydrogenase gene. Genomics 2:57–65

    Article  CAS  PubMed  Google Scholar 

  12. Stewart MJ, Malek K, Crabb DW (1996) Distribution of messenger RNAs for aldehyde dehydrogenase 1, aldehyde dehydrogenase 2, and aldehyde dehydrogenase 5 in human tissues. J Investig Med 44:42–46

    CAS  PubMed  Google Scholar 

  13. Ni L, Zhou J, Hurley TD et al (1999) Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms. Protein Sci 8:2784–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perez-Miller SJ, Hurley TD (2003) Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. Biochemistry 42:7100–7109

    Article  CAS  PubMed  Google Scholar 

  15. Takagi S, Iwai N, Yamauchi R et al (2002) Aldehyde dehydrogenase 2 gene is a risk factor for myocardial infarction in Japanese men. Hypertens Res 25:677–681

    Article  CAS  PubMed  Google Scholar 

  16. Jo SA, Kim EK, Park MH et al (2007) A Glu487Lys polymorphism in the gene for mitochondrial aldehyde dehydrogenase 2 is associated with myocardial infarction in elderly Korean men. Clin Chim Acta 382:43–47

    Article  CAS  PubMed  Google Scholar 

  17. Chen CH, Budas GR, Churchill EN et al (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321:1493–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bian Y, Chen YG, Xu F et al (2010) The polymorphism in aldehyde dehydrogenase-2 gene is associated with elevated plasma levels of high-sensitivity C‑reactive protein in the early phase of myocardial infarction. Tohoku J Exp Med 221:107–112

    Article  CAS  PubMed  Google Scholar 

  19. Xu F, Chen YG, Xue L et al (2011) Role of aldehyde dehydrogenase 2 Glu504lys polymorphism in acute coronary syndrome. J Cell Mol Med 15:1955–1962. Erratum in. J Cell Mol Med 16:1155

    Google Scholar 

  20. Ma H, Yu L, Byra EA et al (2010) Aldehyde dehydrogenase 2 knockout accentuates ethanol-induced cardiac depression: role of protein phosphatases. J Mol Cell Cardiol 49:322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma H, Li J, Gao F et al (2009) Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: role of protein phosphatase and forkhead transcription factor. J Am Coll Cardiol 54:2187–2196

    Article  CAS  PubMed  Google Scholar 

  22. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  23. Ma H, Guo R, Yu L et al (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32:1025–1038

    Article  CAS  PubMed  Google Scholar 

  24. Li SY, Gomelsky M, Duan J et al (2004) Overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene prevents acetaldehyde-induced cell injury in human umbilical vein endothelial cells: role of ERK and p38 mitogen-activated protein kinase. J Biol Chem 279:11244–11252

    Article  CAS  PubMed  Google Scholar 

  25. Choi H, Tostes RC, Webb RC (2011) Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice. J Am Soc Hypertens 5:154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li SY, Li Q, Shen JJ et al (2006) Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes: role of MAP kinase signaling. J Mol Cell Cardiol 40:283–294

  27. Ge W, Ren J (2012) mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 16:616–626

    Article  PubMed  Google Scholar 

  28. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250

    Article  CAS  PubMed  Google Scholar 

  29. Wen Z, Darnell JE Jr (1997) Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res 25:2062–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ruppert V, Meyer T (2007) JAK-STAT signaling circuits in myocarditis and dilated cardiomyopathy. Herz 32:474–481

    Article  PubMed  Google Scholar 

  31. Hilfiker-Kleiner D, Hilfiker A, Fuchs M et al (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195

    Article  CAS  PubMed  Google Scholar 

  32. Hilfiker-Kleiner D, Shukla P, Klein G et al (2010) Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 122:145–155

    Article  CAS  PubMed  Google Scholar 

  33. Gough DJ, Corlett A, Schlessinger K et al (2009) Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324:1713–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wegrzyn J, Potla R, Chwae YJ et al (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heusch G, Musiolik J, Gedik N et al (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109:1302–1308

    Article  CAS  PubMed  Google Scholar 

  36. Carbognin E, Betto RM, Soriano ME et al (2016) Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO J 35:618–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Meyer.

Ethics declarations

Conflict of interest

E. Leibing and T. Meyer state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leibing, E., Meyer, T. Enzymes and signal pathways in the pathogenesis of alcoholic cardiomyopathy. Herz 41, 478–483 (2016). https://doi.org/10.1007/s00059-016-4459-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-016-4459-8

Keywords

Schlüsselwörter

Navigation