Skip to main content
Log in

A three-dimensional method to calculate mechanical advantage in mandibular function

Intra- and interexaminer reliability study

Eine dreidimensionale Methode zur Berechnung des mechanischen Vorteils der Unterkieferfunktion

Studie zur Intra- und Inter-Untersucher-Reliabilität

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

Masticatory muscles are physically affected by several skeletal features. The muscle performance depends on muscle size, intrinsic strength, fiber direction, moment arm, and neuromuscular control. To date, for the masticatory apparatus, only a two-dimensional cephalometric method for assessing the mechanical advantage, which is a measure for the ratio of the output force to the input force in a system, is available. This study determined the reliability and errors of a three-dimensional (3D) mechanical advantage calculation for the masticatory system.

Methods

Using cone-beam computed tomography images from teenage patients undergoing orthodontic treatments, 36 craniofacial landmarks were identified, and the moment arms for seven muscles and their load moment arms (biomechanical variables) were determined. The 3D mechanical advantage for each muscle was calculated. This procedure was repeated by three examiners. Reliability was verified using the intraclass correlation coefficient (ICC) and the errors by calculating the absolute differences, variance estimator and coefficient of variation (CV).

Results

Landmark coordinates demonstrated excellent intra- and interexaminer reliability (ICC 0.998–1.000; p < 0.0001). Intraexaminer data showed errors < 1.5 mm. Unsatisfactory interexaminer errors ranged from 1.51–5.83 mm. All biomechanical variables presented excellent intraexaminer reliability (ICC 0.919–1.000, p < 0.0001; CV < 7%). Interexaminer results were almost excellent, but with lower values (ICC 0.750–1.000, p < 0.0001; CV < 10%). However, the muscle moment arm and 3D mechanical advantage of the lateral pterygoid muscles had ICCs < 0.500 (p < 0.05) and CV < 30%. Intra- and interexaminer errors were ≤ 0.01 and ≤ 0.05, respectively.

Conclusions

Both landmarks and biomechanical variables showed high reliability and acceptable errors. The proposed method is viable for the 3D mechanical advantage measure.

Zusammenfassung

Zielsetzung

Die Kaumuskulatur wird körperlich von mehreren Skelettmerkmalen beeinflusst. Die Muskelleistung hängt ab von der Muskelgröße, der intrinsischen Kraft, der Richtung der Muskelfasern, dem Impulsarm und der neuromuskulären Kontrolle. Bisher gibt es für den Kauorganapparat nur eine zweidimensionale kephalometrische Methode zur Beurteilung des mechanischen Vorteils, der ein Maß für das Verhältnis von Ausgangskraft zu Eingangskraft in einem System ist. In der vorliegenden Untersuchung wurden die Zuverlässigkeit und die Fehler einer dreidimensionalen (3-D) Berechnung des mechanischen Vorteils für den Kauapparat ermittelt.

Methoden

Anhand von digitalen Volumentomographie-Aufnahmen jugendlicher Kieferorthopädie-Patienten wurden 36 kraniofaziale Orientierungspunkte identifiziert und die Momentenarme für 7 Muskeln und ihre Lastmomentarme (biomechanische Variablen) bestimmt. Der mechanische 3‑D-Vorteil für jeden Muskel wurde berechnet. Dieses Verfahren wurde von 3 Untersuchern wiederholt. Die Zuverlässigkeit wurde anhand des Intraklassen-Korrelationskoeffizienten (ICC) überprüft, die Fehler durch Berechnung der absoluten Differenzen, des Varianzschätzers und des Variationskoeffizienten (CV).

Ergebnisse

Die Koordinaten der Referenzpunkte wiesen eine ausgezeichnete Intra- und Inter-Untersucher-Reliabilität auf (ICC 0,998–1,000; p < 0,0001). Die Intra-Untersucher-Daten zeigten Fehler < 1,5 mm. Unbefriedigende Inter-Untersucher-Fehler reichten von 1,51‑5,83 mm. Alle biomechanischen Variablen wiesen eine ausgezeichnete Intra-Untersucher-Reliabilität auf (ICC 0,919–1,000, p < 0,0001; CV < 7%). Die Inter-Untersucher-Ergebnisse waren fast hervorragend, jedoch mit niedrigeren Werten (ICC 0,750–1,000, p < 0,0001; CV < 10%). Der Drehmomentarm des Muskels und der mechanische 3‑D-Vorteil der seitlichen Pterygoidmuskeln wiesen jedoch ICCs < 0,500 (p < 0,05) und CV < 30% auf. Intra- und Inter-Untersucher-Fehler waren ≤ 0,01 bzw. ≤ 0,05.

Schlussfolgerungen

Sowohl die Referenzpunkte als auch die biomechanischen Variablen zeigten eine hohe Reliabilität und akzeptable Fehler. Die hier vorgeschlagene Methode ist für die Messung des mechanischen 3‑D-Vorteils geeignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4

Similar content being viewed by others

References

  1. Hamill J, Knutzen KM, Derrick TR (2014) Biomechanical basis of human movement, 4th edn. Wolters Kluwer Health Adis, Philadelphia

    Google Scholar 

  2. Throckmorton GS, Finn RA, Bell WH (1980) Biomechanics of differences in lower facial height. Am J Orthod 77:410–420. https://doi.org/10.1016/0002-9416(80)90106-2

    Article  PubMed  Google Scholar 

  3. Throckmorton GS, Dean JS (1994) The relationship between jaw-muscle mechanical advantage and activity levels during isometric bites in humans. Arch Oral Biol 39:429–437. https://doi.org/10.1016/0003-9969(94)90174-0

    Article  PubMed  Google Scholar 

  4. García-Morales P, Buschang PH, Throckmorton GS, English JD (2003) Maximum bite force, muscle efficiency and mechanical advantage in children with vertical growth patterns. Eur J Orthod 25:265–272. https://doi.org/10.1093/ejo/25.3.265

    Article  PubMed  Google Scholar 

  5. Charalampidou M, Kjellberg H, Georgiakaki I, Kiliaridis S (2008) Masseter muscle thickness and mechanical advantage in relation to vertical craniofacial morphology in children. Acta Odontol Scand 66:23–30. https://doi.org/10.1080/00016350701884604

    Article  PubMed  Google Scholar 

  6. van Spronsen PH (2010) Long-face craniofacial morphology: cause or effect of weak masticatory musculature? Semin Orthod 16:99–117. https://doi.org/10.1053/j.sodo.2010.02.001

    Article  Google Scholar 

  7. Sagl B, Schmid-Schwap M, Piehslinger E et al (2019) A dynamic jaw model with a finite-element temporomandibular joint. Front Physiol 10:1–12. https://doi.org/10.3389/fphys.2019.01156

    Article  Google Scholar 

  8. Thomas GP, Throckmorton GS, Ellis E, Sinn DP (1995) The effects of orthodontic treatment on isometric bite forces and mandibular motion in patients before orthognathic surgery. J Oral Maxillofac Surg 53:673–678. https://doi.org/10.1016/0278-2391(95)90168-X

    Article  PubMed  Google Scholar 

  9. Lagravère MO, Gordon JM, Guedes IH et al (2009) Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod 79:1047–1056. https://doi.org/10.2319/010509-10R.1

    Article  PubMed  Google Scholar 

  10. Dicker GJ, Koolstra JH, Castelijns JA et al (2012) Positional changes of the masseter and medial pterygoid muscles after surgical mandibular advancement procedures: An MRI study. Int J Oral Maxillofac Surg 41:922–929. https://doi.org/10.1016/j.ijom.2012.01.007

    Article  PubMed  Google Scholar 

  11. Dicker GJ, Tuijt M, Koolstra JH et al (2012) Static and dynamic loading of mandibular condyles and their positional changes after bilateral sagittal split advancement osteotomies. Int J Oral Maxillofac Surg 41:1131–1136. https://doi.org/10.1016/j.ijom.2012.03.013

    Article  PubMed  Google Scholar 

  12. O’Neil R, Kau CH (2021) Comparison of dental arch forms created from assessment of teeth, alveolar bone, and the overlying soft tissue. J Orofac Orthop. https://doi.org/10.1007/s00056-021-00282-6

    Article  PubMed  Google Scholar 

  13. Becht MP, Mah J, Martin C et al (2014) Évaluation De La Morphologie Du Muscle Masséter Dans Différents Types De Malocclusions En Utilisant La Tomographie Volumétrique À Faisceau Conique. Int Orthod 12:32–48. https://doi.org/10.1016/j.ortho.2013.12.003

    Article  PubMed  Google Scholar 

  14. Velásquez RL, Coro JC, Londoño A et al (2018) Three-dimensional morphological characterization of malocclusions with mandibular lateral displacement using cone-beam computed tomography. Cranio 36:143–155. https://doi.org/10.1080/08869634.2017.1300994

    Article  PubMed  Google Scholar 

  15. Luebbert J, Ghoneima A, Lagravère MO (2016) Skeletal and dental effects of rapid maxillary expansion assessed through three-dimensional imaging: a multicenter study. Int Orthod 14:15–31. https://doi.org/10.1016/j.ortho.2015.12.013

    Article  PubMed  Google Scholar 

  16. Draenert FG, Erbe C, Zenglein V et al (2010) 3D analysis of condylar position after sagittal split osteotomy of the mandible in mono- and bimaxillary orthognathic surgery—a methodology study in 18 patients. J Orofac Orthop 71:421–429. https://doi.org/10.1007/s00056-010-1021-9

    Article  PubMed  Google Scholar 

  17. Alhammadi MS, Elfeky HY, Fayed MS et al (2019) Three-dimensional skeletal and pharyngeal airway changes following therapy with functional appliances in growing skeletal Class II malocclusion patients. J Orofac Orthop 80:254–265. https://doi.org/10.1007/s00056-019-00185-7

    Article  PubMed  Google Scholar 

  18. Haskell B, Day M, Tetz J (1986) Computer-aided modeling in the assessment of the biomechanical determinants of diverse skeletal patterns. Am J Orthod 89:363–382. https://doi.org/10.1016/0002-9416(86)90068-0

    Article  PubMed  Google Scholar 

  19. Springate SD (2012) The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg’s formula. Eur J Orthod 34:158–163. https://doi.org/10.1093/ejo/cjr010

    Article  PubMed  Google Scholar 

  20. Lagravère MO, Low C, Flores-Mir C et al (2010) Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3‑dimensional cone-beam computerized tomography images. Am J Orthod Dentofac Orthop 137:598–604. https://doi.org/10.1016/j.ajodo.2008.07.018

    Article  Google Scholar 

  21. Naji P, Alsufyani NA, Lagravère MO (2014) Reliability of anatomic structures as landmarks in three-dimensional cephalometric analysis using CBCT. Angle Orthod 84:762–772. https://doi.org/10.2319/090413-652.1

    Article  PubMed  Google Scholar 

  22. Zhang X, Ye L, Li H et al (2018) Surgical navigation improves reductions accuracy of unilateral complicated zygomaticomaxillary complex fractures: a randomized controlled trial. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-25053-z

    Article  Google Scholar 

  23. Coombs MC, Bonthius DJ, Nie X et al (2019) Effect of measurement technique on TMJ mandibular condyle and articular disc morphometry: CBCT, MRI, and physical measurements. J Oral Maxillofac Surg 77:42–53. https://doi.org/10.1016/j.joms.2018.06.175

    Article  PubMed  Google Scholar 

  24. Lagravère MO, Major PW (2005) Proposed reference point for 3‑dimensional cephalometric analysis with cone-beam computerized tomography. Am J Orthod Dentofac Orthop 128:657–660. https://doi.org/10.1016/j.ajodo.2005.07.003

    Article  Google Scholar 

  25. Baron P, Debussy T (1979) A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol 24:547–553. https://doi.org/10.1016/0003-9969(79)90134-1

    Article  PubMed  Google Scholar 

  26. Koolstra JH, van Eijden TMGJ, van Spronsen PH et al (1990) Computer-assisted estimation of lines of action of human masticatory muscles reconstructed in vivo by means of magnetic resonance imaging of parallel sections. Arch Oral Biol 35:549–556. https://doi.org/10.1016/0003-9969(90)90086-P

    Article  PubMed  Google Scholar 

  27. Van Eijden TMGJ, Korfage JAM, Brugman P (1997) Architecture of the human jaw-closing and jaw-opening muscles. Anat Rec 248:464–474

    Article  PubMed  Google Scholar 

  28. Tuijt M, Koolstra JH, Lobbezoo F, Naeije M (2010) Differences in loading of the temporomandibular joint during opening and closing of the jaw. J Biomech 43:1048–1054. https://doi.org/10.1016/j.jbiomech.2009.12.013

    Article  PubMed  Google Scholar 

  29. Nicolielo LFP, Van Dessel J, Shaheen E et al (2017) Validation of a novel imaging approach using multi-slice CT and cone-beam CT to follow-up on condylar remodeling after bimaxillary surgery. Int J Oral Sci 9:139–144. https://doi.org/10.1038/ijos.2017.22

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim H‑Y (2013) Statistical notes for clinical researchers: Evaluation of measurement error 1: using intraclass correlation coefficients. Restor Dent Endod 38:98. https://doi.org/10.5395/rde.2013.38.2.98

    Article  PubMed  PubMed Central  Google Scholar 

  31. Maspero C, Abate A, Bellincioni F et al (2019) Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: a pilot study in adults. Prog Orthod 20:40. https://doi.org/10.1186/s40510-019-0293-x

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475. https://doi.org/10.1002/uog.5256

    Article  PubMed  Google Scholar 

  33. Shechtman O (2013th) The coefficient of variation as an index of measurement reliability. In: Doi SAR, Williams GM (eds) Methods of clinical epidemiology. Springer, Heidelberg, New York, pp 39–49 https://doi.org/10.1007/978-3-642-37131-8_4

    Chapter  Google Scholar 

  34. Throckmorton GS, Ellis E (2001) The relationship between surgical changes in dentofacial morphology and changes in maximum bite force. J Oral Maxillofac Surg 59:620–627. https://doi.org/10.1053/joms.2001.23373

    Article  PubMed  Google Scholar 

  35. Hannam AG, McMillan AS (1994) Internal organization in the human jaw muscles. Crit Rev Oral Biol Med 5:55–89. https://doi.org/10.1177/10454411940050010301

    Article  PubMed  Google Scholar 

  36. Castro IO, Gribel FB, de Alencar AHG et al (2018) Evaluation of crown inclination and angulation after orthodontic treatment using digital models. J Orofac Orthop 79:227–234. https://doi.org/10.1007/s00056-018-0136-2

    Article  PubMed  Google Scholar 

  37. Takeuchi-Sato T, Arima T, Mew M, Svensson P (2019) Relationships between craniofacial morphology and masticatory muscle activity during isometric contraction at different interocclusal distances. Arch Oral Biol 98:52–60. https://doi.org/10.1016/j.archoralbio.2018.10.030

    Article  PubMed  Google Scholar 

  38. Du W, Bhojwani A, Hu JK (2021) FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 13:1–16. https://doi.org/10.1038/s41368-020-00110-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Sánchez-Ayala DDS MS PhD.

Ethics declarations

Conflict of interest

A. Sánchez-Ayala, A. Sánchez-Ayala, R.C. Kolodzejezyk, V.M. Urban, M.Ó. Lagravère and N.H. Campanha declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. This work was approved by the Health Research Ethics Board at the University of Alberta (#5563). All subjects who participated in the study signed written informed consent to participate.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental figures 1–3

Supplemental video 1: Identification of the 36 craniofacial landmarks, and determination of the spatial reference planes, moment arms for seven muscles (superficial masseter, anterior and posterior deep masseter, anterior and posterior temporal, and medial and lateral pterygoid), and their corresponding load moment arms at the incisor and molar position

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ayala, A., Sánchez-Ayala, A., Kolodzejezyk, R.C. et al. A three-dimensional method to calculate mechanical advantage in mandibular function. J Orofac Orthop 84, 321–339 (2023). https://doi.org/10.1007/s00056-022-00378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-022-00378-7

Keywords

Schlüsselwörter

Navigation