Skip to main content
Log in

Influence of piezotomy and osteoperforation of the alveolar process on the rate of orthodontic tooth movement: a systematic review

Einfluss von Piezotomie und Osteoperforation des Alveolarfortsatzes auf die Geschwindigkeit der orthodontischen Zahnbewegung: Ein systematisches Review

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The minimally invasive procedures piezosurgical corticocision and osteoperforation have been advocated as methods to accelerate orthodontic tooth movement and to shorten treatment time, but without large-scale trauma of the periosteum and the bone. The aim of this study was to evaluate if there is evidence supporting these claims based on a systematic review of the literature.

Materials and methods

A search of PubMed and Google Scholar with the combined search terms “piezo*” and “tooth movement” was performed until May 2016. In addition, the keywords “osteoperforation” and “piezopuncture” were searched in both databases. All scientific articles were considered and examined for suitability by two scientists. Disagreements resolved by consensus. The first inclusion criterion was studies with human species. Second inclusion criterion the surgical procedure had to be performed transmucosally and without the elevation of a mucoperiosteal flap. Case series were also considered.

Results

The Google Scholar search delivered 516, the PubMed search 60 references. A total of 36 human trials fulfilling the first inclusion criterion were identified. Among those, in only 13 publications was a transmucosal technique used (12 on piezosurgical corticocision and 1 on osteoperforation). Of the 13 articles, 9 represented case series and only 4 were clinical trials. In all four trials, an acceleration of the orthodontic treatment was reported. However, the extent of the acceleration was inconsistent and in one article it disappeared when assessing the overall orthodontic treatment.

Conclusion

Evidence for an acceleration of tooth movement in conjunction with the minimally invasive methods piezosurgical corticocision and osteoperforation of the alveolar process in humans is low.

Zusammenfassung

Ziel

Die minimal-invasiven chirurgischen Verfahren Piezozision, Piezopunktion und Osteoperforation sollen eine Beschleunigung der orthodontischen Zahnbewegung bewirken, ohne jedoch eine großflächige Traumatisierung des Periosts zu erfordern. Ziel dieser Studie war es, anhand einer systematischen Überprüfung der Literatur zu beurteilen, ob es Evidenz dafür gibt, die diese Behauptungen hinsichtlich einer Beschleunigung der Zahnbewegung belegen.

Material und Methoden

In den Datenbanken PubMed und Google Scholar wurde mit den kombinierten Suchbegriffen “piezo*” und “tooth movement” recherchiert. Zudem wurde in beiden Datenbanken nach den Suchbegriffen “osteoperforation” und “piezopuncture“ gesucht. Erstes Einschlusskriterium war eine Beschränkung auf die Spezies Mensch, sodass tierexperimentelle Studien herausfielen, auch reine Technikbeschreibungen wurden eliminiert. Zweites Kriterium war ein transmukosales chirurgisches Vorgehen ohne Bildung eines Mukoperiostlappens.

Ergebnisse

Google-Scholar lieferte 516, PubMed 60 Literaturstellen. 36 Artikel erfüllten die Bedingung einer klinischen Untersuchung am Menschen. Unter diesen 36 Artikeln fanden sich nur 13 mit einer transmukosalen Vorgehensweise. 12 von ihnen berichteten über Piezozisionen, eine über Osteoperforationen des Alveolarfortsatzes. Neun von 13 Artikeln waren Kasuistiken nur 4 der 13 Artikel klinische Studien. In allen 4 Studien wurde über eine Beschleunigung der kieferorthopädischen Behandlung berichtet, das Ausmaß war jedoch unterschiedlich.

Schlussfolgerungen

Zum gegenwärtigen Zeitpunkt ist die Evidenz für eine Beschleunigung der Zahnbewegung im Zusammenhang mit den minimal-invasiven Methoden Piezozision, Piezopunktion und Osteoperforation des Alveolarfortsatzes beim Menschen gering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jordan CN (1998) Prevention of white spot enamel formation during orthodontic treatment. Gen Dent 46:498–502

    PubMed  Google Scholar 

  2. Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod 72:175–179

    PubMed  Google Scholar 

  3. Thilander BL (1992) Complications of orthodontic treatment. Curr Opin Dent 2:28–37

    PubMed  Google Scholar 

  4. Fink DF, Smith RJ (1992) The duration of orthodontic treatment. Am J Orthod Dentofac Orthop 102:45–51

    Article  Google Scholar 

  5. DiBiase AT, Nasr IH, Scott P et al (2011) Duration of treatment and occlusal outcome using Damon3 self-ligated and conventional orthodontic bracket systems in extraction patients: a prospective randomized clinical trial. Am J Orthod Dentofac Orthop 139:e111–e116

    Article  Google Scholar 

  6. Wehrbein H, Göllner P (2007) Skeletal anchorage in orthodontics–basics and clinical application. J Orofac Orthop 68:443–461

    Article  PubMed  Google Scholar 

  7. Wilmes B, Rademacher C, Olthoff G et al (2006) Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop 67:162–174

    Article  PubMed  Google Scholar 

  8. Krishnan V, Davidovitch Z (2006) The effect of drugs on orthodontic tooth movement. Orthod Craniofac Res 9:163–171

    Article  PubMed  Google Scholar 

  9. Nishimura M, Chiba M, Ohashi T et al (2008) Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats. Am J Orthod Dentofac Orthop 133:572–583

    Article  Google Scholar 

  10. Showkatbakhsh R, Jamilian A, Showkatbakhsh M (2010) The effect of pulsed electromagnetic fields on the acceleration of tooth movement. World J Orthod 11:e52–e56

    PubMed  Google Scholar 

  11. Yamaguchi M, Hayashi M, Fujita S et al (2010) Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod 32:131–139

    Article  PubMed  Google Scholar 

  12. Frost HM (1983) The regional acceleratory phenomenon: a review. Henry Ford Hosp Med J 31:3–9

    PubMed  Google Scholar 

  13. Liou EJ, Huang CS (1998) Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofac Orthop 114:372–382

    Article  Google Scholar 

  14. Wilcko W, Wilcko MT (2013) Accelerating tooth movement: the case for corticotomy-induced orthodontics. Am J Orthod Dentofac Orthop 144:4–12

    Article  Google Scholar 

  15. Wilcko WM, Wilcko T, Bouquot JE et al (2001) Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restor Dent 21:9–19

    Google Scholar 

  16. Wilcko MT, Wilcko WM, Pulver JJ et al (2009) Accelerated osteogenic orthodontics technique: a 1-stage surgically facilitated rapid orthodontic technique with alveolar augmentation. J Oral Maxillofac Surg 67:2149–2159

    Article  PubMed  Google Scholar 

  17. Dibart S, Sebaoun JD, Surmenian J (2009) Piezocision: a minimally invasive, periodontally accelerated orthodontic tooth movement procedure. Compend Contin Educ Dent 30:342–344, 346, 348–350

  18. Alikhani M, Raptis M, Zoldan B et al (2013) Effect of micro-osteoperforations on the rate of tooth movement. Am J Orthod Dentofac Orthop 144:639–648

    Article  Google Scholar 

  19. Bondemark L, Holm AK, Hansen K et al (2007) Long-term stability of orthodontic treatment and patient satisfaction. A systematic review. Angle Orthod 77:181–191

    Article  PubMed  Google Scholar 

  20. Centre for Reviews and Dissemination (2009) I. Systematic reviews. CRD’s guidance for undertaking reviews in health care, 3rd edn. Centre for Reviews and Dissemination, York

  21. Reimann I Erfolgreich recherchieren—Medizin. De Gruyter

  22. Mehr R (2013) Efficiency of piezotome-corticision assisted orthodontics in alleviating mandibular anterior crowding—a randomized controlled clinical trial. In: Master Thesis, University of Connecticut. Connecticut. http://digitalcommons.uconn.edu/gs_theses/506

  23. Aylikci O, Sakin C (2013) Piezocision-assisted canine distalization. J Orthod Res 1:70

    Article  Google Scholar 

  24. Brugnami F, Caiazzo A, Dibart S (2013) Lingual orthodontics: accelerated realignment of the “social six” with piezocision. Compend Contin Educ Dent 34:608–610

    PubMed  Google Scholar 

  25. Hernandez-Alfaro F, Guijarro-Martinez R (2012) Endoscopically assisted tunnel approach for minimally invasive corticotomies: a preliminary report. J Periodontol 83:574–580

    Article  PubMed  Google Scholar 

  26. Jofre J, Montenegro J, Arroyo R (2013) Rapid orthodontics with flapless piezoelectric corticotomies: first clinical experiences. Int J Odontostomat 7:79–85

    Article  Google Scholar 

  27. Keser EI, Dibart S (2011) Piezocision-assisted invisalign treatment. Compend Contin Educ Dent (Jamesburg, NJ: 1995) 32:46–48, 50–41

  28. Keser EI, Dibart S (2013) Sequential piezocision: a novel approach to accelerated orthodontic treatment. Am J Orthod Dentofac Orthop 144:879–889

    Article  Google Scholar 

  29. Rivas PS (2015) Accelerated orthodontic treatment in apatient with reduced periodontal tissue. Case report. Revista mexicana de ortodoncia 3:120–127

    Article  Google Scholar 

  30. Sebaoun JD, Surmenian J, Dibart S (2011) Traitements orthodontiques accélérés par piézocision: une alternative mini-invasive aux corticotomies alvéolaires. Orthod Fr 82:311–319

    Article  PubMed  Google Scholar 

  31. Çörekçi B, Irgin C, Halicioglu K et al (2013) Periodontally accelerated molar distalization with miniscrew assisted memory screw: a pilot study. Turk J Orthod 26:162–168

    Article  Google Scholar 

  32. Aksakalli S, Calik B, Kara B et al (2016) Accelerated tooth movement with piezocision and its periodontal-transversal effects in patients with Class II malocclusion. Angle Orthod 86:59–65

    Article  PubMed  Google Scholar 

  33. Charavet C, Lecloux G, Bruwier A et al (2016) Localized piezoelectric alveolar decortication for orthodontic treatment in adults: a randomized controlled trial. J Dent Res 95:1003–1009

    Article  PubMed  Google Scholar 

  34. Iliadi A, Kloukos D, Gkantidis N et al (2015) Failure of fixed orthodontic retainers: a systematic review. J Dent 43:876–896

    Article  PubMed  Google Scholar 

  35. Tsichlaki A, Chin SY, Pandis N et al (2016) How long does treatment with fixed orthodontic appliances last? A systematic review. Am J Orthod Dentofac Orthop 149:308–318

    Article  Google Scholar 

  36. Liem AM, Hoogeveen EJ, Jansma J et al (2015) Accelerated orthodontic treatment. Ned Tijdschr Tandheelkd 122:627–635

    Article  PubMed  Google Scholar 

  37. Nimeri G, Kau CH, Abou-Kheir NS et al (2013) Acceleration of tooth movement during orthodontic treatment—a frontier in orthodontics. Prog Orthod 14:42

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shoreibah EA, Salama AE, Attia MS et al (2012) Corticotomy-facilitated orthodontics in adults using a further modified technique. J Int Acad Periodontol 14:97–104

    PubMed  Google Scholar 

  39. Alghamdi AS (2010) Corticotomy facilitated orthodontics: review of a technique. Saudi Dent J 22:1–5

    Article  PubMed  Google Scholar 

  40. Schmidt-Rogge N (2001) Quantitative und qualitative Auswertung kieferorthopädischer Behandlungen. Humboldt-Universität zu Berlin, Medizinische Fakultät-Universitätsklinikum Charité, Berlin

    Google Scholar 

  41. Guyot L (2016) Orthognathic surgery: surgical failures and complications. Orthod Fr 87:107–109

    Article  PubMed  Google Scholar 

  42. Papageorgiou SN, Antonoglou GN, Tsiranidou E et al (2016) Bias and small-study effects influence treatment effect estimates: a meta-epidemiological study in oral medicine. J Clin Epidemiol 67:984–992

    Article  Google Scholar 

  43. Papageorgiou SN, Xavier GM, Cobourne MT (2015) Basic study design influences the results of orthodontic clinical investigations. J Clin Epidemiol 68:1512–1522

    Article  PubMed  Google Scholar 

  44. Kim YS, Kim SJ, Yoon HJ et al (2013) Effect of piezopuncture on tooth movement and bone remodeling in dogs. Am J Orthod Dentofac Orthop 144:23–31

    Article  Google Scholar 

  45. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(6):e1000097. doi:10.1371/journal.pmed1000097

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vercellotti T, Podesta A (2007) Orthodontic microsurgery: a new surgically guided technique for dental movement. Int J Periodontics Restor Dent. 27(4):325–331

    Google Scholar 

  47. Dibart S, Surmenian J, Sebaoun JD, Montesani L (2010) Rasche Behandlung einer Klasse-II-Malokklusion mit der „Piezozision“: Zwei Fallberichte. Int J Par Rest Zahnheilkd. 30:467–473

    Google Scholar 

  48. Echchadi ME, Benchikh B, Bellamine M, Kim SH (2015) Corticotomy-assisted rapid maxillary expansion: a novel approach with a 3-year follow-up. Am J Orthod Dentofac Orthop 148(1):138–153

    Article  Google Scholar 

  49. Yu H, Jiao F, Wang B, Shen SG (2013) Piezoelectric decortication applied in periodontally accelerated osteogenic orthodontics. J Craniofac Surg. 24(5):1750–1752

    Article  PubMed  Google Scholar 

  50. Gülnahar Y, Hüseyin Köşger H, Tutar Y (2013) A comparison of piezosurgery and conventional surgery by heat shock protein 70 expression. Int J Oral Maxillofac Surg 42(4):508–510

    Article  PubMed  Google Scholar 

  51. Wu J, Jiang JH, Xu L, Liang C, Bai Y, Zou W (2015) A pilot clinical study of Class III surgical patients facilitated by improved accelerated osteogenic orthodontic treatments. Angle Orthod 85(4):616–624

    Article  PubMed  Google Scholar 

  52. Abbas IT, Moutamed GM (2012) Acceleration of orthodontic tooth movement by alveolar corticotomy using piezosurgery. J Am Sci 8(2):13–19

    Google Scholar 

  53. Ozer M, Akdeniz BS, Sumer M (2013) Alveolar ridge expansion-assisted orthodontic space closure in the mandibular posterior region. Korean J Orthod. 43(6):302–310

    Article  PubMed  PubMed Central  Google Scholar 

  54. Coscia G, Coscia V, Peluso V, Addabbo F (2013) Augmented corticotomy combined with accelerated orthodontic forces in class III orthognathic patients: morphologic aspects of the mandibular anterior ridge with cone-beam computed tomography. J Oral Maxillofac Surg 71(10):1760.e1–9

  55. Reyes OA, Enríquez HF, Marín GMG (2012) Corticotomy, orthodontic microsurgery in patient with reduced periodontium. Report of a clinical case. Rev Odont Mex 16(4):272–278

    Google Scholar 

  56. Kim SH, Kim I, Jeong DM, Chung KR, Zadeh H (2011) Corticotomy-assisted decompensation for augmentation of the mandibular anterior ridge. Am J Orthod Dentofac Orthop 140(5):720–731

    Article  Google Scholar 

  57. Patel N, Waring D, Saksena A (2014) Corticotomy-assisted orthodontics: a review of surgical technique with case report. Oral Surg 7(1):59–64

    Article  Google Scholar 

  58. Grenga V, Bovi M (2013) Corticotomy-enhanced intrusion of an overerupted molar using skeletal anchorage and ultrasonic surgery. J Clin Orthod. 47(1):50–55

    PubMed  Google Scholar 

  59. Finotti M, Del Torre M, Roberto M, Miotti FA (2009) Traduction de Rozencweig G. La distalisation des molaires mandibulaires peut-elle être facilitée? Une nouvelle méthode thérapeutique. Orthod Fr 80:371–78

  60. Agabiti I, Capparè P, Gherlone EF, Mortellaro C, Bruschi GB, Crespi R (2014) New surgical technique and distraction osteogenesis for ankylosed dental movement. J Craniofac Surg. 25(3):828–830

    Article  PubMed  Google Scholar 

  61. Bertossi D, Vercellotti T, Podesta A, Nocini PF (2011) Orthodontic microsurgery for rapid dental repositioning in dental malpositions. J Oral Maxillofac Surg 69(3):747–753

    Article  PubMed  Google Scholar 

  62. Bhat SG, Singh V, Bhat MK (2012) PAOO technique for the bimaxillary protrusion: perio–ortho interrelationship. J Indian Soc Periodontol 16(4):584–587

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu H, Jiao F, Wang B, Shen SG (2013) Piezoelectric Decortication applied in periodontally accelerated osteogenic orthodontics. J Craniofac Surg 24:1750–1752

    Article  PubMed  Google Scholar 

  64. Amato F, Mirabella AD, Borlizzi D (2012) Rapid Orthodontic treatment after the ridge-splitting technique—a combined surgical-orthodontic approach for implant site development: case report. Int J Periodontics Restor Dent 32:395–402

    Google Scholar 

  65. Bousquet P, Artz C, Canal P (2013) Traitement des dents ankylosées par corticotomie partielle: l’ Orthodontic Bone Stretching. Étude préliminaire. Orthod Fr 84:333–341

    Article  PubMed  Google Scholar 

  66. Finn MD (2014) Surgical assistance for rapid orthodontic treatment and temporary skeletal anchorage. Oral Maxillofac Surg Clin North Am. 26(4):539–550

    Article  PubMed  Google Scholar 

  67. Cassetta M, Di Carlo S, Giansanti M, Pompa V, Pompa G, Barbato E (2012) The impact of osteotomy technique for corticotomy-assisted orthodontic treatment (CAOT) on oral health-related quality of life. Eur Rev Med Pharmacol Sci. 16(12):1735–1740

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hoffmann.

Ethics declarations

Conflict of interest

S. Hoffmann, N. Papadopoulos, D. Visel, T. Visel, P.G. Jost-Brinkmann, and T.M. Präger state that there are no conflicting interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, S., Papadopoulos, N., Visel, D. et al. Influence of piezotomy and osteoperforation of the alveolar process on the rate of orthodontic tooth movement: a systematic review. J Orofac Orthop 78, 301–311 (2017). https://doi.org/10.1007/s00056-017-0085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-017-0085-1

Keywords

Schlüsselwörter

Navigation