Skip to main content
Log in

3D Soft Tissue Analysis – Part 1: Sagittal Parameters

3D-Weichteilanalyse – Teil 1: Sagittale Parameter

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective:

The aim of this study was to develop a reliable threedimensional (3D) analysis of facial soft tissues. We determined the mean sagittal 3D values and relationships between sagittal skeletal parameters, and digitally recorded 3D soft tissue parameters.

Patients and Methods:

A total of 100 adult patients (nª = 53, nº = 47) of Caucasian ethnic origin were included in this study. Patients with syndromes, cleft lip and palate, noticeable asymmetry or anomalies in the number of teeth were excluded. Arithmetic means for seven sagittal 3D soft tissue parameters were calculated. The parameters were analyzed biometrically in terms of their reliability and gender-specific differences. The 3D soft tissue values were further analyzed for any correlations with sagittal cephalometric values.

Results:

Reproducible 3D mean values were defined for 3D soft tissue parameters. We detected gender-specific differences among the parameters. Correlations between the sagittal 3D soft tissue and cephalometric measurements were statistically significant.

Conclusion:

3D soft tissue analysis provides additional information on the sagittal position of the jaw bases and on intermaxillary sagittal relations. Further studies are needed to integrate 3D soft tissue analysis in future treatment planning and assessment as a supportive diagnostic tool.

Zusammenfassung

Zielsetzung:

Ziel dieser Untersuchung war die Entwicklung einer reliablen dreidimensionalen (3D) Analyse der Gesichtsweichteile. Es sollten sagittale 3D-Durchschnittswerte bestimmt werden und Beziehungen zwischen sagittalen skelettalen Parametern und digital erfassten 3D-Weichteilparametern dargestellt werden.

Patienten und Methodik:

In die Studie eingeschlossen wurden 100 erwachsene Patienten (nª = 53, nº = 47) kaukasischer Herkunft. Ausgeschlossen wurden Patienten mit Syndromen, LKGSSpalten, auffälligen Asymmetrien oder Anomalien der Zahnzahl. Es wurden arithmetische Mittelwerte für sieben sagittale 3DWeichteilparameter ermittelt. Die Parameter wurden biometrisch hinsichtlich ihrer Reliabilität und geschlechtsspezifischer Unterschiede analysiert. Des Weiteren wurden die 3D-Weichteilwerte bezüglich bestehender Korrelationen zu sagittalen kephalometrischen Werten untersucht.

Ergebnisse:

Für die 3D-Weichteilparameter konnten reproduzierbare 3D-Durchschnittswerte definiert werden. Innerhalb der Parameter ließen sich geschlechtsspezifische Unterschiede feststellen. Die Korrelationen zwischen den sagittalen 3D-Weichteilmessungen und den kephalometrischen Messungen waren statistisch signifikant.

Schlussfolgerung:

Die 3D-Weichteilanalyse lässt Aussagen sowohl über den sagittalen Einbau der Kieferbasen als auch über die sagittalen intermaxillären Beziehungen zu. Weitere Untersuchungen sind wünschenswert, um die 3D-Weichteildiagnostik zukünftig als unterstützendes diagnostisches Instrument in die Behandlungsplanung und -bewertung integrieren zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part I. Am J Orthod Dentofac Orthop 1993;103:299–312.

    Article  Google Scholar 

  2. Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part II. Am J Orthod Dentofac Orthop 1993;103:395–411.

    Article  Google Scholar 

  3. Baier B. Die Korrelation skelettaler Variablen mit Parametern der Gesichtsästhetik — eine Querschnittstudie. Med Diss, Julius-Maximilians-Universität Würzburg, 2008.

  4. Burstone CJ. Lip posture and its significance in treatment planning. Am J Orthod 1967;53:262–84.

    Article  PubMed  Google Scholar 

  5. Burstone CJ. The integumental profile. Am J Orthod 1958;44:1–25.

    Article  Google Scholar 

  6. Dahlberg G. Statistical methods for medical and biological students. New York: Interscience Publications, 1940.

    Google Scholar 

  7. Downs WB. Analysis of the dentofacial profile. Angle Orthod 1956;26:191–212.

    Google Scholar 

  8. Farkas LG. Anthropometry of the head and face. 2nd ed. New York: Raven Press, 1994.

    Google Scholar 

  9. Ferrario VF, Ciusa V, Tartaglia GM. The effect of sex and age on facial asymmetry in healthy subjects: a cross-sectional study from adolescence to mid-adulthood. J Oral Maxillofac Surg 2001;59:382–8.

    Article  PubMed  Google Scholar 

  10. Ferrario VF, Sforza CC, Poggio CE, Tartaglia GM. Distance from symmetry: a three-dimensional evaluation of facial asymmetry. J Oral Maxillofac Surg 1994;52:1126–32.

    Article  PubMed  Google Scholar 

  11. Gruber M, Häusler G. Simple, robust and accurate phase-measuring triangulation. Optik 1992;89:118–22.

    Google Scholar 

  12. Hajeer MY, Ayoub AF, Millett DT. Three-dimensional assessment of facial soft-tissue asymmetry before and after orthognathic surgery. Br J Oral Maxillofac Surg 2004;42:396–404.

    Article  PubMed  Google Scholar 

  13. Hartmann J, Meyer-Marcotty Ph, Benz M, et al. Reliability of a method for computing facial symmetry plane and degree of asymmetry based on 3D data. J Orofac Orthop 2007;68:477–90.

    Article  PubMed  Google Scholar 

  14. Hershon LE, Giddon DB. Determinants of facial profile self-perception. Am J Orthod 1980;78:279–95.

    Article  PubMed  Google Scholar 

  15. Holberg C. Erfassung von Gesichtsoberflächen durch ein lichtcodiertes Triangulationsverfahren. Med Diss, Universität Tübingen, 2002.

  16. Holdaway RA. A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part I. Am J Orthod 1983;84:1–28.

    Article  PubMed  Google Scholar 

  17. Hönn M, Diez K, Godt A, Göz, G. Perceived relative attractiveness of facial profiles with varying degrees of skeletal anomalies. J Orofac Orthop 2005;66:187–96.

    Article  PubMed  Google Scholar 

  18. Hönn M, Göz G. The ideal of facial beauty: a review. J Orofac Orthop 2007;68:6–16.

    Article  PubMed  Google Scholar 

  19. Houston WJB. The analysis of error in orthodontic measurements. Am J Orthod 1983;83:382–90.

    Article  PubMed  Google Scholar 

  20. Ing E, Safarpour A, Ing T, Ing S, Ocular adnexal asymmetry in models: a magazine photograph analysis. Can J Ophtalmol 2006;41:175–82.

    Article  Google Scholar 

  21. Jung D, Schwarze CW, Tsutsumi S. Profile and skeletal analyses — a comparison of different assessment procedures. Fortschr Kieferorthop 1984;45:304–23.

    Article  PubMed  Google Scholar 

  22. Karbacher S. Rekonstruktion und Modellierung von Flächen aus Tiefenbildern. Diss, Friedrich-Alexander-Universität Erlangen-Nürnberg, 1997.

  23. Kau CH, Richmond S. Three-dimensional analysis of facial morphology surface changes in untreated children from 12–14 years of age. Am J Orthod Dentofac Orthopedics 2008;134:751–60.

    Article  Google Scholar 

  24. Kitay D, BeGole EA, Evans CA, Giddon DB. Computer-animated comparison of self-perception with actual profiles of orthodontic and nonorthodontic subjects. Int J Adult Orthod Orthognath Surg 1999;14:125–34.

    Google Scholar 

  25. Kokich VO, Kokich VG, Kiyak HA. Perceptions of dental professionals and laypersons to altered dental esthetics: asymmetric and symmetric situations. Am J Othod Dentofacial Orthop 2006;130:141–51.

    Article  Google Scholar 

  26. Lines PA, Lines RR, Lines CA. Profilemetrics and facial esthetics. Am J Orthod 1978;73:648–57.

    Article  PubMed  Google Scholar 

  27. Merrifield L. The profile line as an aid in critically evaluating facial esthetics. Am J Orthod 1966;52:804–22.

    Article  PubMed  Google Scholar 

  28. Meyer-Marcotty P, Alpers GW, Gerdes ABM, Stellzig-Eisenhauer A. The impact of facial asymmetry in visual perception: a 3D data analysis. Am J Orthod Dentofacial Orthop; in press.

  29. Naini FB, Moss JP, Gill DS. The enigma of facial beauty: esthetics, proportions, deformity, and controversy. Am J Orthod Dentofacial Orthop 2006;130:277–82.

    Article  PubMed  Google Scholar 

  30. Nkenke E, Vairaktaris E, Kramer M, et al. Three-dimensional analysis of changes of the malar-midfacial region after LeFort I osteotomy and maxillary advancement. Oral Maxillofac Surg 2008;12:5–12.

    Article  PubMed  Google Scholar 

  31. O’Grady KF, Antonyshyn OM. Facial asymmetry: three-dimensional analysis using laser surface scanning. Plast Reconstr Surg 1999;104:928–37.

    Article  PubMed  Google Scholar 

  32. Panagiotidis G, Witt E. Der individualisierte ANB-Winkel. Fortschr Kieferorthop 1977; 38:408–16.

    Article  Google Scholar 

  33. Peck H, Peck S. A concept of facial esthetics. Angle Orthod 1970;40:284–318.

    PubMed  Google Scholar 

  34. Plooij JM, Swennen GR, Rangel FA, et al. Evaluation of reproducibility and reliability of 3D soft tissue analysis using 3D stereophotogrammetry. Int J Oral Maxillofac Surg. 2009;38:267–73.

    Article  PubMed  Google Scholar 

  35. Powel N, Humphreys B. Proportions of the aesthetic face. New York: Thieme-Stratton Inc, 1984.

    Google Scholar 

  36. Rakosi T, Jonas I. Kieferorthopädie, Diagnostik. Farbatlanten der Zahnmedizin. Bd 8. Stuttgart: Thieme, 1989.

    Google Scholar 

  37. Rakosi T. Atlas und Anleitung zur praktischen Fernröntgenanalyse. München: Hanser Fachbuch, 1988.

    Google Scholar 

  38. Ras F, Habets LL, Van Ginkel FC, Prahl-Andersen B. Quantification of facial morphology using stereophotogrammetry — demonstration of a new concept. J Dent 1996;24:369–74.

    Article  PubMed  Google Scholar 

  39. Ricketts RM. Esthetics, environment and the law of lip relation. Am J Orthod 1968;54:272–89.

    Article  PubMed  Google Scholar 

  40. Riolo ML, Moyers RE, TenHave TR, Mayers CA. Facial soft tissue changes during adolescence. In: Carlson DS, Ribbens KA, eds. Craniofacial growth during adolescence. Monograph 20, Craniofacial Growth Series. Ann Arbor, MI: Center for Human Growth and Development; University of Michigan, 1987.

    Google Scholar 

  41. Sandler PJ. Reproducibility of cephalometric measurements. Br J Orthod 1988;15:105–10.

    PubMed  Google Scholar 

  42. Schwarz AM. Die Röntgenostatik; München-Wien-Baltimore: Urban & Schwarzenberg, 1958.

    Google Scholar 

  43. Sforza C, Laino A, D’Alessio R, et al. Three-dimensional facial morphometry of attractive adolescent boys and girls. Prog Orthod 2007;8:268–81.

    PubMed  Google Scholar 

  44. Stauber I, Vairaktaris E, Holst A, et al. Three-dimensional analysis of facial symmetry in cleft lip and palate patients using optical surface data. J Orofac Orthop 2008;69:268–82.

    Article  PubMed  Google Scholar 

  45. Stoner MM. A photometric analysis of the facial profile. A method of assessing facial change induced by orthodontic treatment. Am J Orthod 1955;4:453–69.

    Article  Google Scholar 

  46. Subtelny JD. A longitudinal study of soft tissue facial structures and their profile characteristics defined in relation to underlying skeletal structures. Am J Orthod 1959;45:453–507.

    Article  Google Scholar 

  47. Swennen GRJ, Schutyser F, Barth E, et al. A new method of 3D Cephalometry Part I: The anatomic Cartesian 3D reference system. J Craniofac Surg 2006;17:314–25.

    Article  PubMed  Google Scholar 

  48. Swennen GRJ, Schutyser F, Lemaitre A, et al. Accuracy and reliability of 3D CT versus 3D stereo photogrammetry based facial soft tissue analysis. Int J Oral Maxillofac Surg 2005:34:73.

    Article  Google Scholar 

  49. Veit K. Verringerung systematischer Messfehler bei der phasenmessenden Triangulation. Diss, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janka Kochel.

Additional information

These authors contributed equally to this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochel, J., Meyer-Marcotty, P., Strnad, F. et al. 3D Soft Tissue Analysis – Part 1: Sagittal Parameters. J Orofac Orthop 71, 40–52 (2010). https://doi.org/10.1007/s00056-010-9926-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-010-9926-x

Key Words:

Schlüsselwörter:

Navigation