Skip to main content
Log in

A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

The flora of Papua New Guinea is amongst the richest in the world with an estimated 25,000 plant species. The extreme levels of biodiversity, climatic ranges and soil types suggest a high possibility of metal hyperaccumulator plants existing in Papua New Guinea. However, no hyperaccumulator plants have been reported from this region yet. The use of handheld X-ray fluorescence instruments is a non-destructive and effective method for the systematic quantitative assessment of hyperaccumulation in vast numbers of herbarium specimens. X-ray fluorescence scanning was undertaken at the Queensland Herbarium (Australia) on all Papua New Guinea specimens from seven major families (Celastraceae, Cunoniaceae, Phyllanthaceae, Proteaceae, Rubiaceae, Salicaceae and Violaceae), covering 3164 plant specimens. This preliminary survey revealed the existence of ten zinc hyperaccumulator species (> 3000 µg g−1 Zn), eight manganese accumulator species (> 5000 µg g−1 Mn) and one nickel hyperaccumulator species (> 1000 µg g−1 Ni). These results highlight the potential for discovery of numerous new metal hyperaccumulator plants from the flora of Papua New Guinea if larger-scale systematic screening efforts were undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Axelrod DI, Raven PH (1982) Paleobiogeography and origin of the New Guinea flora. In: Gressitt JL (ed) Biogeography and ecology of new guinea: parts 1–7. Springer, Dordrecht, pp 919–941

    Chapter  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper-accumulate metallic elements—a review of their distribution. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB et al (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  Google Scholar 

  • Cary EE, Kubota J (1990) Chromium concentration plants: effects of soil chromium concentration and tissue contamination by soil. J Agric Food Chem 38(1):108–114

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Clemens S (2016) How metal hyperaccumulating plants can advance Zn biofortification. Plant Soil 411(1–2):111–120

    Google Scholar 

  • Erskine P, van der Ent A, Fletcher A (2012) Sustaining metal-loving plants in mining regions. Science 337:1172–1173

    Article  CAS  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD et al (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:931–939

    Article  CAS  Google Scholar 

  • Gei V, Erskine PD, Harris HH et al (2018) Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 117–133

    Chapter  Google Scholar 

  • Gei V, Isnard S, Erskine PD, Guillaume Echevarria G, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc (in press)

  • Guatimosim E, Firmino AL, Bezerra JL, Pereira OL, Barreto RW, Crous PW (2015) Towards a phylogenetic reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes). Persoonia 35:230–241

    Article  CAS  Google Scholar 

  • Heads M (2001) Regional patterns of biodiversity in New Guinea plants. Bot J Linn Soc 136:67–73

    Article  Google Scholar 

  • Jaffré T (1979) Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. Comptes Rendus Acad Sci D 289:425–428

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279

    Article  Google Scholar 

  • James SA, Allison A, Snow N (2010) Discovery and inventory of Papua New Guinea’s Megadiverse Flora. https://doi.org/10.13140/rg.2.2.19344.61440

  • Losfeld G, Mathieu R, L’Huillier L et al (2015) Phytoextraction from mine spoils: insights from New Caledonia. Environ Sci Pollut Res 22:5608–5619

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, van der Ent A (2017) Nickel hyperaccumulation in Antidesma montis-silam: from herbarium discovery to collection in the native habitat. Ecol Res 33:675–685

    Article  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine PD, van der Ent A (2018) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659

    Article  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    Article  CAS  Google Scholar 

  • Prance GT, Beentje H, Dransfield J, Johns R (2000) The tropical flora remains undercollected. Ann Missouri Bot Gard 87:67–71

    Article  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T et al (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T et al (2018) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218:407–411

    Article  Google Scholar 

  • Schiavon M, Pilon-Smits EAH (2016) The fascinating facets of plant selenium accumulation—biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596

    Article  Google Scholar 

  • Shearman PL, Ash J, Mackey B, Bryan JE, Lokes B (2009) Forest conversion and degradation in Papua New Guinea 1972–2002. Biotropica 41:379–390

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • van der Ent A, Jaffré T, L’Huillier L et al (2015a) The flora of ultramafic soils in the Australia-Pacific Region: state of knowledge and research priorities. Aust J Bot 63:173–190

    Article  Google Scholar 

  • van der Ent A, Erskine P, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25:243–259

    Article  Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82

    Article  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN et al (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861

    Article  Google Scholar 

  • van der Ent A, Echevarria G, Pollard AJ, Erskine PD (2019a) X-ray fluorescence ionomics of herbarium collections. Sci Rep 9:4746

    Article  Google Scholar 

  • van der Ent A, Ocenar A, Tisserand R, Sugau JB, Erskine PD, Echevarria G (2019b) Herbarium X-ray fluorescence screening for nickel, cobalt and manganese hyperaccumulation in the flora of Sabah (Malaysia, Borneo Island). J Geochem Explor 202:49–58

    Article  Google Scholar 

  • West P (2006) Conservation is our government now: the politics of ecology in Papua New Guinea. Duke University Press, Durham

    Book  Google Scholar 

  • White P, Broadley M (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182(1):49–84

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D et al (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nigel Fechner, senior Mycologist (Queensland Herbarium, DES, Brisbane Botanic Gardens) for identification of the ascomycete. Christina Do was funded through the Pacific Islands Universities Research Network and Pacific Fund projects “PACIFIC NICKELATORS: Advancing nickel hyperaccumulator plants discovery and utilization for mining site rehabilitation across Papua New Guinea, New Caledonia and Australia”. A. van der Ent was the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. Farida Abubakari is the recipient of a UQ Graduate School Scholarship (UQGSS) from The University of Queensland. A. Corzo Remigio is the recipient of the University of Queensland Research Training Scholarship, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony van der Ent.

Additional information

Handling Editor: Marko Rohlfs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, C., Abubakari, F., Remigio, A.C. et al. A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology 30, 1–13 (2020). https://doi.org/10.1007/s00049-019-00293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-019-00293-1

Keywords

Navigation