Skip to main content

Advertisement

Log in

Sphingosine 1-phosphate receptor modulators for the treatment of inflammatory bowel disease and other immune-mediated diseases

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease involving the ileum, rectum, and colon. Clinical manifestations include diarrhea, abdominal pain, and bloody stool. The disease includes ulcerative colitis (UC) and Crohn’s disease (CD). Biological therapies, including anti-TNF, anti-IL-12/23, and anti-integrins, improved the treatment of IBD, but they lack universal effectiveness and uniform immunogenicity. The advantage of small molecules over biological therapies includes tolerance of low immunogenicity, oral administration, and low manufacturing cost. Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a signaling molecule that is involved in immunological, cardiovascular, and neurological processes through interaction with sphingosine 1-phosphate receptors (S1PRs). S1P binds to S1PRs on the cell surface, activating multiple downstream signaling pathways such as AKT, Rac, Rho, ERK and PKC, causing a wide range of biological effects. S1PR is a G protein-coupled receptor with five subtypes: S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. S1PR1 to 3 are expressed in various tissues, and S1PR4 is expressed in lymph nodes. S1PR5 is expressed in brain and skin. The S1PR agonists arise as new strategies for regulating downstream cytokine signaling in immune-mediated diseases. This article reviews the mechanisms of immune regulation by S1P/S1PRs, the pharmacokinetics of S1PR modulators (Fingolimod, Ozanimod, Etrasimod, Siponimod, among others), and the related clinical data.

S1PR subtypes and the medications that functionally modulate them

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

S1PR:

Sphingosine-1-phosphate receptor

EDG:

Endothelial differentiation gene

Akt:

Serine/threonine kinase (protein kinase B)

Rac:

Protein kinase B

ERK:

Extracellular regulated protein kinases

PLC:

Phospholipase C

PKC:

Protein kinase C

Rho:

Ras homolog gene family

ROCK/ROK:

Rho activates Rho kinase

CNS:

Central nervous system

FDA:

Food and Drug Administration

UC:

Ulcerative colitis

CD:

Crohn’s disease

IBD:

Inflammatory bowel disease

CDAI:

Crohn’s disease activity index

MS:

Multiple sclerosis

JAK:

Janus kinase

STAT:

Signal transducer and activator of transcription

BBB:

Blood brain barrier

BMS:

Bristol-Myers Squibb

ARR:

Annual relapse rate

OASIS:

Oxford Acute Severity of Illness Score

mMCS:

Modified Mayo Clinic score

MCS:

Mayo Clinic score

BOLD:

Blood oxygen level dependent

RRMS:

Relapsing-remitting multiple sclerosis

SPMS:

Secondary progressive multiple sclerosis

SLE:

Systemic lupus erythematosus

AE:

Adverse effect

TEAES:

Treatment-emergent AEs

NF-κB:

Nuclear factor kappa-B

IL:

Interleukin

COX-2:

Cyclooxygenase-2

RA:

Rheumatoid arthritis

OR:

Odds ratio

CI:

Confidence interval

Tmax:

Peak time

Cmax:

Peak concentration

AV block:

Atrioventricular block

References

  1. Hla T, Brinkmann V. Sphingosine 1-phosphate (S1P) physiology and the effects of S1P receptor modulation. Neurology. 2011;76:S3–8. https://doi.org/10.1212/WNL.0b013e31820d5ec1.

    Article  PubMed  CAS  Google Scholar 

  2. Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81:207–31. https://doi.org/10.1007/s40265-020-01431-8.

    Article  PubMed  CAS  Google Scholar 

  3. Park SJ, Im DS. Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol Ther. 2017;25:80–90. https://doi.org/10.4062/biomolther.2016.160.

    Article  CAS  Google Scholar 

  4. Waeber C, Walther T. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J. 2014;78:795–802. https://doi.org/10.1253/circj.CJ-14-0178.

    Article  PubMed  CAS  Google Scholar 

  5. Patmanathan SN, Wang W, Yap LF, Herr DR, Paterson IC. Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell Signal. 2017;34:66–75. https://doi.org/10.1016/j.cellsig.2017.03.002.

    Article  PubMed  CAS  Google Scholar 

  6. Intapad S. Sphingosine-1-phosphate signaling in blood pressure regulation. Am J Physiol Ren Physiol. 2019;317:E638–40. https://doi.org/10.1152/ajprenal.00572.2018.

    Article  CAS  Google Scholar 

  7. Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Front Cell Neurosci. 2014;8. https://doi.org/10.3389/fncel.2014.00283.

  8. Kono M, Proia RL. Imaging S1P1 activation in vivo. Exp Cell Res. 2015;333:178–82. https://doi.org/10.1016/j.yexcr.2014.11.023.

    Article  PubMed  CAS  Google Scholar 

  9. Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Investig. 2014;124:2076–86. https://doi.org/10.1172/jci71194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 2014;55:1596–608. https://doi.org/10.1194/jlr.R046300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Blankenbach KV, Schwalm S, Pfeilschifter J, zu Heringdorf DM. Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharm. 2016;7:14. https://doi.org/10.3389/fphar.2016.00167.

    Article  CAS  Google Scholar 

  12. Siehler S, Wang Y, Fan X, Windh RT, Manning DR. Sphingosine 1-phosphate activates nuclear factor-kappa B through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. J Biol Chem. 2001;276:48733–9. https://doi.org/10.1074/jbc.M011072200.

    Article  PubMed  CAS  Google Scholar 

  13. O’Sullivan MJ, Hirota N, Martin JG. Sphingosine 1-phosphate (S1P) induced interleukin-8 (IL8) release is mediated by S1P receptor 2 and nuclear factor kappa B in BEAS-2B cells. PLoS ONE. 2014;9:e95566. https://doi.org/10.1371/journal.pone.0095566.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Volzke A, Koch A, Heringdorf DMZ, Huwiler A, Pfeilschifter J. Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE(2) formation via S1P receptor 2 in renal mesangial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841:11–21. https://doi.org/10.1016/j.bbalip.2013.09.009.

    Article  CAS  Google Scholar 

  15. Zhang GQ, Yang L, Kim GS, Ryan K, Lu SL, O’Donnell RK, et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood. 2013;122:443–55. https://doi.org/10.1182/blood-2012-11-467191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Takabe K, Paugh SW, Milstien S, Spiegel S. “Inside-Out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharm Rev. 2008;60:181–95. https://doi.org/10.1124/pr.107.07113.

    Article  PubMed  CAS  Google Scholar 

  17. Bravo GÁ, Cedeño RR, Casadevall MP, Ramió-Torrentà L. Sphingosine-1-phosphate (S1P) and S1P signaling pathway modulators, from current insights to future perspectives. Cells. 2022;11:2058. https://doi.org/10.3390/cells11132058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fryer RM, Muthukumarana A, Harrison PC, Mazurek SN, Chen RR, Harrington KE, et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PLoS ONE. 2012;7:9. https://doi.org/10.1371/journal.pone.0052985.

    Article  CAS  Google Scholar 

  19. Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115:84–105. https://doi.org/10.1016/j.pharmthera.2007.04.006.

    Article  PubMed  CAS  Google Scholar 

  20. Wang WG, Graeler MH, Goetzl EJ. Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P(4)) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. Faseb J. 2005;19:1731. https://doi.org/10.1096/fj.05-3730fje.

    Article  PubMed  CAS  Google Scholar 

  21. Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM, Grossi G, et al. An update on JAK inhibitors. Curr Med Chem. 2019;26:1806–32. https://doi.org/10.2174/0929867325666180327093502.

    Article  PubMed  CAS  Google Scholar 

  22. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJ. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Disco. 2017;16:843–62. https://doi.org/10.1038/nrd.2017.201.

    Article  CAS  Google Scholar 

  23. Matsukawa A. STAT proteins in innate immunity during sepsis: lessons from gene knockout mice. Acta Med Okayama. 2007;61:239–45. https://doi.org/10.18926/amo/32897.

    Article  PubMed  CAS  Google Scholar 

  24. Winthrop KL. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol. 2017;13:234–43. https://doi.org/10.1038/nrrheum.2017.23.

    Article  PubMed  CAS  Google Scholar 

  25. Xie WH, Xiao SY, Huang YR, Sun XY, Zhang ZL. Effect of tofacitinib on cardiovascular events and all-cause mortality in patients with immune-mediated inflammatory diseases: a systematic review and meta-analysis of randomized controlled trials. Ther Adv Musculoskelet Dis. 2019;11:18. https://doi.org/10.1177/1759720×19895492.

    Article  Google Scholar 

  26. Venetsanopoulou AI, Voulgari PV, Drosos AA. Janus kinase versus TNF inhibitors: where we stand today in rheumatoid arthritis. Expert Rev Clin Immunol. 2022;18:485–93. https://doi.org/10.1080/1744666x.2022.2064275.

    Article  PubMed  CAS  Google Scholar 

  27. Atreya R, Billmeier U, Rath T, Neumann H, Neurath MF. Binding of membrane-bound TNF. In: Rogler G, Herfarth H, Hibi T, Nielsen OH, editors. Anti-tumor necrosis factor therapy in inflammatory bowel disease. Frontiers of Gastrointestinal Research. Basel: Karger; 2015. p. 62–72.

  28. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46. https://doi.org/10.1038/nri1001.

    Article  PubMed  CAS  Google Scholar 

  29. Pugliese D, Privitera G, Fiorani M, Parisio L, Calvez V, Papa A, et al. Targeting IL12/23 in ulcerative colitis: update on the role of ustekinumab. Ther Adv Gastroenterol. 2022;15:17562848221102283. https://doi.org/10.1177/17562848221102283.

    Article  Google Scholar 

  30. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The role of tumor necrosis factor alpha (TNF-alpha) in autoimmune disease and current TNF-alpha inhibitors in therapeutics. Int J Mol Sci. 2021;22:16. https://doi.org/10.3390/ijms22052719.

    Article  CAS  Google Scholar 

  31. Papamichael K, Lin S, Moore M, Papaioannou G, Sattler L, Cheifetz AS. Infliximab in inflammatory bowel disease. Ther Adv Chronic Dis. 2019;10:15. https://doi.org/10.1159/000509393.

    Article  Google Scholar 

  32. Yarur AJ, Rubin DT. Therapeutic drug monitoring of anti-tumor necrosis factor agents in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21:1709–18. https://doi.org/10.1097/mib.0000000000000380.

    Article  PubMed  Google Scholar 

  33. Olivera P, Danese S, Peyrin-Biroulet L. Next generation of small molecules in inflammatory bowel disease. Gut. 2017;66:199–209. https://doi.org/10.1136/gutjnl-2016-312912.

    Article  PubMed  CAS  Google Scholar 

  34. Cramer JA, Roy A, Burrell A, Fairchild CJ, Fuldeore MJ, Ollendorf DA, et al. Medication compliance and persistence: terminology and definitions. Value Health. 2008;11:44–7. https://doi.org/10.1111/j.1524-4733.2007.00213.x.

    Article  PubMed  Google Scholar 

  35. Chun J, Kihara Y, Jonnalagadda D, Blaho VA. Fingolimod: lessons learned and new opportunities for treating multiple sclerosis and other disorders. In: Insel PA, editor. Annual review of pharmacology and toxicology, Vol 59. Palo Alto: Annual Reviews; 2019. p. 149–70.

  36. Curro D, Pugliese D, Armuzzi A. Frontiers in drug research and development for inflammatory bowel disease. Front Pharm. 2017;8:19. https://doi.org/10.3389/fphar.2017.00400.

    Article  CAS  Google Scholar 

  37. Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33:91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zecri FJ. From natural product to the first oral treatment for multiple sclerosis: the discovery of FTY720 (Gilenya (TM))? Curr Opin Chem Biol. 2016;32:60–6. https://doi.org/10.1016/j.cbpa.2016.04.014.

    Article  PubMed  CAS  Google Scholar 

  39. Kappos L, Antel J, Comi G, Montalban X, O’Connor P, Polman CH, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124–40. https://doi.org/10.1056/NEJMoa052643.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15. https://doi.org/10.1056/NEJMoa0907839.

    Article  PubMed  CAS  Google Scholar 

  41. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:545–56. https://doi.org/10.1016/s1474-4422(14)70049-3.

    Article  PubMed  CAS  Google Scholar 

  42. Cohen JA, Khatri B, Barkhof F, Comi G, Hartung H-P, Montalban X, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry. 2016;87:468–75. https://doi.org/10.1136/jnnp-2015-310597.

    Article  PubMed  Google Scholar 

  43. Khatri B, Barkhof F, Comi G, Hartung HP, Kappos L, Montalban X, et al. Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol. 2011;10:520–9. https://doi.org/10.1016/s1474-4422(11)70099-0.

    Article  PubMed  CAS  Google Scholar 

  44. DiMarco JP, O’Connor P, Cohen JA, Reder AT, Zhang-Auberson L, Tang DJ, et al. First-dose effects of fingolimod: pooled safety data from three phase 3 studies. Mult Scler Relat Disord. 2014;3:629–38. https://doi.org/10.1016/j.msard.2014.05.005.

    Article  PubMed  Google Scholar 

  45. Ziemssen T, Albrecht H, Haas J, Klotz L, Lang M, Lassek C, et al. 36 months PANGAEA: a 5-year non-interventional study of safety, efficacy and pharmacoeconomic data for fingolimod patients in daily clinical practice. Mult Scler J. 2015;21:281–2. https://doi.org/10.1016/j.jval.2015.09.2894.

    Article  Google Scholar 

  46. Bourdette D, Gilden D. Fingolimod and multiple sclerosis four cautionary tales. Neurology. 2012;79:1942–3. https://doi.org/10.1212/WNL.0b013e3182735edf.

    Article  PubMed  Google Scholar 

  47. Lindsey JW, Haden-Pinneri K, Memon NB, Buja LM. Sudden unexpected death on fingolimod. Mult Scler J. 2012;18:1507–8. https://doi.org/10.1177/1352458512438456.

    Article  CAS  Google Scholar 

  48. Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:859–73. https://doi.org/10.1007/s13311-017-0565-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rasche L, Paul F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother. 2018;19:2073–86. https://doi.org/10.1080/14656566.2018.1540592.

    Article  PubMed  CAS  Google Scholar 

  50. Lassiter G, Melancon C, Rooney T, Murat AM, Kaye JS, Kaye AM, et al. Ozanimod to treat relapsing forms of multiple sclerosis: a comprehensive review of disease, drug efficacy and side effects. Neurol Int. 2020;12:89–108. https://doi.org/10.3390/neurolint12030016.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Squibb B-M. Food and Drug Administration approves Bristol Myers Squibbs ZEPOSIA® (Ozanimod), a new oral treatment for relapsing forms of multiple sclerosis. 2020. http://www.bms.com.

  52. Scott FL, Clemons B, Brooks J, Brahmachary E, Powell R, Dedman H, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P(1)) and receptor-5 (S1P(5)) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173:1778–92. https://doi.org/10.1111/bph.13476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lamb YN. Ozanimod: first approval. Drugs. 2020;80:841–8. https://doi.org/10.1007/s40265-020-01319-7.

    Article  PubMed  CAS  Google Scholar 

  54. Tran JQ, Hartung JP, Olson AD, Mendzelevski B, Timony GA, Boehm MF, et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: results of a thorough QT/QTc study. Clin Pharm Drug Dev. 2018;7:263–76. https://doi.org/10.1002/cpdd.383.

    Article  CAS  Google Scholar 

  55. Cohen JA, Comi G, SeImaj KW, Bar-Or A, Arnold DL, Steinman L, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18:1021–33. https://doi.org/10.1016/s1474-4422(19)30238-8.

    Article  PubMed  CAS  Google Scholar 

  56. Sandborn WJ, Feagan BG, Wolf DC, D’Haens G, Vermeire S, Hanauer SB, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med. 2016;374:1754–62. https://doi.org/10.1056/NEJMoa1513248.

    Article  PubMed  CAS  Google Scholar 

  57. Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S, Hartung JP, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:373–81. https://doi.org/10.1016/s1474-4422(16)00018-1.

    Article  PubMed  CAS  Google Scholar 

  58. Hanzel J, Hulshoff MS, Grootjans J, D’Haens G. Emerging therapies for ulcerative colitis. Expert Rev Clin Immunol. 2022;18:513–24. https://doi.org/10.1080/1744666x.2022.2069562.

    Article  PubMed  CAS  Google Scholar 

  59. Gras J. Etrasimod arginine. Drug Future. 2020;45:165–73. https://doi.org/10.1358/dof.2020.45.3.3093451.

    Article  Google Scholar 

  60. Peyrin-Biroulet L, Christopher R, Behan D, Lassen C. Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmun Rev. 2017;16:495–503. https://doi.org/10.1016/j.autrev.2017.03.007.

    Article  PubMed  CAS  Google Scholar 

  61. Vermeire S, Chiorean M, Panes J, Peyrin-Biroulet L, Zhang JK, Sands BE, et al. Long-term safety and efficacy of etrasimod for ulcerative colitis: results from the open-label extension of the OASIS study. J Crohns Colitis. 2021;15:950–9. https://doi.org/10.1093/ecco-jcc/jjab016.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sandborn WJ, Peyrin-Biroulet L, Zhang JK, Chiorean M, Vermeire S, Lee SD, et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158:550–61. https://doi.org/10.1053/j.gastro.2019.10.035.

    Article  PubMed  CAS  Google Scholar 

  63. Fathi I, Nishimura R, Imura T, Inagaki A, Kanai N, Ushiyama A, et al. KRP-203 is a desirable immunomodulator for islet allotransplantation. Transplantation. 2022;106:963–72. https://doi.org/10.1097/tp.0000000000003870.

    Article  PubMed  CAS  Google Scholar 

  64. Fujishiro J, Kudou S, Iwai S, Takahashi M, Hakamata Y, Kinoshita M, et al. Use of sphingosine-1-phosphate 1 receptor agonist, KRP-203, in combination with a subtherapeutic dose of cyclosporine a for rat renal transplantation. Transplantation. 2006;82:804–12. https://doi.org/10.1097/01.tp.0000232687.78242.cd.

    Article  PubMed  CAS  Google Scholar 

  65. Song J, Matsuda C, Kai Y, Nishida T, Nakajima K, Mizushima T, et al. A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J Pharm Exp Ther. 2008;324:276–83. https://doi.org/10.1124/jpet.106.119172.

    Article  CAS  Google Scholar 

  66. Shimizu H, Takahashi M, Kaneko T, Murakami T, Hakamata Y, Kudou S, et al. KRP-203, a novel synthetic immunosuppressant, prolongs graft survival and attenuates chronic rejection in rat skin and heart allografts. Circulation. 2005;111:222–9. https://doi.org/10.1161/01.Cir.0000152101.41037.Ab.

    Article  PubMed  CAS  Google Scholar 

  67. Radeke HH, Stein J, Van Assche G, Rogler G, Lakatos PL, Muellershausen F, et al. A multicentre, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy, safety, and tolerability of the S1P receptor agonist KRP203 in patients with moderately active refractory ulcerative colitis. Inflamm Intest Dis. 2016:S285–S6. https://doi.org/10.1159/000509393.

  68. Sugahara K, Maeda Y, Shimano K, Mogami A, Kataoka H, Ogawa K, et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharm. 2017;174:15–27. https://doi.org/10.1111/bph.13641.

    Article  CAS  Google Scholar 

  69. Sugahara K, Maeda Y, Shimano K, Mogami A, Kataoka H, Ogawa K, et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharm. 2017;174:15–27. https://doi.org/10.1111/bph.13641.

    Article  CAS  Google Scholar 

  70. Pérez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: beyond multiple sclerosis. Drugs. 2021;81:985–1002. https://doi.org/10.1007/s40265-021-01528-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Kappos L, Arnold DL, Bar-Or A, Camm J, Derfuss T, Kieseier BC, et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15:1148–59. https://doi.org/10.1016/s1474-4422(16)30192-2.

    Article  PubMed  CAS  Google Scholar 

  72. ClinicalTrials.gov. Amiselimod. 2022. https://clinicaltrials.gov/ct2/results?cond=Amiselimod&term=&cntry=&state=&city=&dist=.

  73. Glaenzel U, Jin Y, Nufer R, Li WK, Schroer K, Adam-Stitah S, et al. Metabolism and disposition of siponimod, a novel selective S1P(1)/S1P(5) agonist, in healthy volunteers and in vitro identification of human cytochrome P450 enzymes involved in its oxidative metabolism. Drug Metab Dispos. 2018;46:1001–13. https://doi.org/10.1124/dmd.117.079574.

    Article  PubMed  CAS  Google Scholar 

  74. Spampinato SF, Merlo S, Sano Y, Kanda T, Sortino MA. Protective effect of the sphingosine-1 phosphate receptor agonist siponimod on disrupted blood brain barrier function. Biochemical Pharmacol. 2021;186:114465. https://doi.org/10.1016/j.bcp.2021.114465.

    Article  CAS  Google Scholar 

  75. Gergely P, Nuesslein-Hildesheim B, Guerini D, Brinkmann V, Traebert M, Bruns C, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharm. 2012;167:1035–47. https://doi.org/10.1111/j.1476-5381.2012.02061.x.

    Article  CAS  Google Scholar 

  76. O’Sullivan C, Schubart A, Mir AK, Dev KK. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflamm. 2016;13:14. https://doi.org/10.1186/s12974-016-0494-x.

    Article  CAS  Google Scholar 

  77. Kappos L, Li DKB, Stuve O, Hartung HP, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis dose-blinded, randomized extension of the phase 2 BOLD study. JAMA Neurol. 2016;73:1089–98. https://doi.org/10.1001/jamaneurol.2016.1451.

    Article  PubMed  Google Scholar 

  78. ClinicalTrials.gov. A multicenter, randomized, double-blind, parallel-group, placebo-controlled variable treatment duration study evaluating the efficacy and safety of Siponimod [BAF312] in patients with secondary progressive multiple sclerosis followed by extended treatment with open-label BAF312.2018. https://clinicaltrials.gov/ct2/show/NCT01665144?term=NCT01665144&rank=1.

  79. Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–73. https://doi.org/10.1016/s0140-6736(18)30475-6.

    Article  PubMed  CAS  Google Scholar 

  80. Markham A. Ponesimod: first approval. Drugs. 2021;81:957–62. https://doi.org/10.1007/s40265-021-01523-z.

    Article  PubMed  CAS  Google Scholar 

  81. Baldin E, Lugaresi A. Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opin Pharmacother. 2020;21:1955–64. https://doi.org/10.1080/14656566.2020.1799977.

    Article  PubMed  CAS  Google Scholar 

  82. Olsson T, Boster A, Fernandez O, Freedman MS, Pozzilli C, Bach D, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85:1198–208. https://doi.org/10.1136/jnnp-2013-307282.

    Article  PubMed  Google Scholar 

  83. ClinicalTrials.gov. Oral Ponesimod versus teriflunomide in relapsing multiple sclerosis (OPTIMUM) NCT02425644. 2015. https://clinicaltrials.gov/ct2/show/NCT02425644?term=NCT02425644&draw=2&rank=1.

  84. Brossard P, Scherz M, Halabi A, Maatouk H, Krause A, Dingemanse J. Multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ponesimod, an S1P(1) receptor modulator: favorable impact of dose up-titration. J Clin Pharm. 2014;54:179–88. https://doi.org/10.1002/jcph.244.

    Article  CAS  Google Scholar 

  85. ClinicalTrials.gov. A study of the safety and efficacy of ONO-4641 in patients with relapsing-remitting multiple sclerosis (DreaMS). 2010. https://clinicaltrials.gov/ct2/show/NCT01081782?term=Ceralifimod&draw=2&rank=1.

  86. Krosser S, Wolna P, Fischer TZ, Boschert U, Stoltz R, Zhou MJ, et al. Effect of ceralifimod (ONO-4641) on lymphocytes and cardiac function: randomized, double-blind, placebo-controlled trial with an open-label fingolimod arm. J Clin Pharm. 2015;55:1051–60. https://doi.org/10.1002/jcph.513.

    Article  CAS  Google Scholar 

  87. Xu JF, Gray F, Henderson A, Hicks K, Yang JS, Thompson P, et al. Safety, pharmacokinetics, pharmacodynamics, and bioavailability of GSK2018682, a sphingosine-1-phosphate receptor modulator, in healthy volunteers. Clin Pharm Drug Dev. 2014;3:170–8. https://doi.org/10.1002/cpdd.98.

    Article  CAS  Google Scholar 

  88. Yu L, He L, Gan B, Ti R, Xiao Q, Hu H, et al. Structural insights into sphingosine-1-phosphate receptor activation. Proc Natl Acad Sci USA. 2022;119:e2117716119. https://doi.org/10.1073/pnas.2117716119.

  89. ClinicalTrials.gov. Phase 1 study accessing the safety and tolerability of CBP-307.2014. https://clinicaltrials.gov/ct2/show/NCT02280434?term=CBP-307&draw=2&rank=4.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: YW; Performed the literature search and data analysis: LX; Drafted the work: LX; Critically revised the work: PL.

Corresponding authors

Correspondence to Peng Lu or Yubin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Lu, P. & Wang, Y. Sphingosine 1-phosphate receptor modulators for the treatment of inflammatory bowel disease and other immune-mediated diseases. Med Chem Res 31, 2074–2088 (2022). https://doi.org/10.1007/s00044-022-02961-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02961-4

Keywords

Navigation