Skip to main content
Log in

Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Kojic acid (KA) is a natural product containing 3-hydroxy-4-pyranone scaffold. It is produced by various aerobic microorganisms such as Aspergillus and Penicillium species. Since this bioactive compound can inhibit tyrosinase enzyme, it has been mainly used as a whitening agent in cosmetics. KA is a polyfunctional heterocycle providing a potential intermediate for the design and synthesis of new biologically active compounds. Numerous studies demonstrated that KA-derived compounds have significant antibacterial, antifungal, anticancer, anticonvulsant, anti-Alzheimer’s disease and metal chelating activities. In this review, we have described diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs.

Modification of the natural product kojic acid has been considered for new lead generation with diverse biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Wilk W, Waldmann H, Kaiser M. Gamma-pyrone natural products–a privileged compound class provided by nature. Bioorg Med Chem. 2009;17:2304–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chib S, Dogra A, Nandi U, Saran S. Consistent production of kojic acid from Aspergillus sojae SSC-3 isolated from rice husk. Mol Biol Rep. 2019;46:5995–6002.

    Article  CAS  PubMed  Google Scholar 

  3. Hashemi SM, Emami S. Kojic acid-derived tyrosinase inhibitors: synthesis and bioactivity. Pharm Biomed Res. 2015;1:1–17.

    Article  Google Scholar 

  4. das Neves PAPFG, Lobato CC, Ferreira LR, Bragança VAN, Veiga AAS, Ordoñez ME, et al. Molecular modification approach on kojic acid derivatives as antioxidants related to ascorbic acid. J Mol Model. 2020;26:318.

    Article  PubMed  Google Scholar 

  5. Hosseinimehr SJ, Emami S, Zakaryaee V, Ahmadi A, Moslemi D. Radioprotective effects of kojic acid against mortality induced by gamma irradiation in mice. Saudi Med J. 2009;30:490–3.

    PubMed  Google Scholar 

  6. Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg Med Chem Lett. 2007;17:45–48.

    Article  CAS  PubMed  Google Scholar 

  7. Kotani T, Ichimoto I, Tatsumi C, Fujita T. Structure-activity study of bacteriostatic kojic acid analogs. Agric Biol Chem. 1975;39:1311–7.

    CAS  Google Scholar 

  8. Kim JH, Chang PK, Chan KL, Faria NC, Mahoney N, Kim YK, et al. Enhancement of commercial antifungal agents by kojic acid. Int J Mol Sci. 2012;13:13867–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodrigues APD, Farias LHS, Carvalho ASC, Santos AS, Do Nascimento JLM, Silva EO. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PLoS One. 2014;9:e91259.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Montazeri M, Emami S, Asgarian-Omran H, Azizi S, Sharif M, Sarvi S, et al. In vitro and in vivo evaluation of kojic acid against Toxoplasma gondii in experimental models of acute toxoplasmosis. Exp Parasitol. 2019;200:7–12.

    Article  CAS  PubMed  Google Scholar 

  11. Zirak M, Eftekhari-Sis B. Kojic acid in organic synthesis. Turk J Chem. 2015;39:439–96.

    Article  CAS  Google Scholar 

  12. Saeedi M, Eslamifar M, Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother. 2019;110:582–93.

    Article  CAS  PubMed  Google Scholar 

  13. Selvin J, Maity D, Sajayan A, Kiran S. Revealing antibiotic resistance in therapeutic and dietary probiotic supplements. J Glob Antimicrob Re. 2020;22:202–5.

    Article  Google Scholar 

  14. Wu Y, Shi YG, Zeng LY, Pan Y, Huang XY, Bian LQ, et al. Evaluation of antibacterial and anti-biofilm properties of kojic acid against five food-related bacteria and related subcellular mechanisms of bacterial inactivation. Food Sci Technol Int. 2019;25:3–15.

    Article  CAS  PubMed  Google Scholar 

  15. Liu X, Xia W, Jiang Q, Xu Y, Yu P. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J Agric Food Chem. 2014;62:297–303.

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Jiang Q, Xia W. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan. Int J Biol Macromol. 2018;113:1125–33.

    Article  CAS  PubMed  Google Scholar 

  17. Aytemir MD, Hider RC, Erol DD, Özalp M, Ekizoğlu M. Synthesis of new antimicrobial agents; amide derivatives of pyranones and pyridinones. Turk J Chem. 2003;27:445–52.

    CAS  Google Scholar 

  18. Aytemir MD, Erol DD, Hider RC, Özalp M. Synthesis and evaluation of antimicrobial activity of new 3-hydroxy-6-methyl-4-oxo-4H-pyran-2-carboxamide derivatives. Turk J Chem. 2003;27:757–64.

    Google Scholar 

  19. Aytemir MD, Özçelik B. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur J Med Chem. 2010;45:4089–95.

    Article  CAS  PubMed  Google Scholar 

  20. Aytemir MD, Özçelik B. Synthesis and biological activities of new Mannich bases of chlorokojic acid derivatives. Med Chem Res. 2011;20:443–52.

    Article  CAS  Google Scholar 

  21. Karakaya G, Aytemir MD, Özçelik B, Çalış Ü. Design, synthesis and in vivo/in vitro screening of novel chlorokojic acid derivatives. J Enzym Inhib Med Chem. 2013;28:627–38.

    Article  CAS  Google Scholar 

  22. Aytemir MD, Özçelik B, Karakaya G. Evaluation of bioactivities of chlorokojic acid derivatives against dermatophytes couplet with cytotoxicity. Bioorg Med Chem Lett. 2013;23:3646–9.

    Article  CAS  PubMed  Google Scholar 

  23. Karakaya G, Türe A, Özdemir A, Özçelik B, Aytemir M. Synthesis and molecular modeling of some novel hydroxypyrone derivatives as antidermatophytic agents, J Heterocyclic Chem. 2022. https://doi.org/10.1002/jhet.4520.

  24. Us D, Gürdal E, Berk B, Öktem S, Kocagöz T, Çağlayan B, et al. 4H-Pyran-4-one derivatives:; leading molecule for preparation of compounds with antimycobacterial potential. Turk J Chem. 2009;33:803–12.

    CAS  Google Scholar 

  25. Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: Synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem. 2013;68:185–91.

    Article  CAS  PubMed  Google Scholar 

  26. Reddy BS, Reddy MR, Madan CH, Kumar KP, Rao MS. Indium (III) chloride catalyzed three-component coupling reaction: A novel synthesis of 2-substituted aryl (indolyl) kojic acid derivatives as potent antifungal and antibacterial agents. Bioorg Med Chem Lett. 2010;20:7507–11.

    Article  CAS  PubMed  Google Scholar 

  27. Bingi C, Emmadi NR, Chennapuram M, Poornachandra Y, Kumar CG, Nanubolu JB, et al. One-pot catalyst free synthesis of novel kojic acid tagged 2-aryl/alkyl substituted-4H-chromenes and evaluation of their antimicrobial and anti-biofilm activities. Bioorg Med Chem Lett. 2015;25:1915–9.

    Article  CAS  PubMed  Google Scholar 

  28. Kim YG, Seo JH, Kwak JH, Shin KJ. Discovery of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor suitable for antistaphylococcal agent. Bioorg Med Chem Lett. 2015;25:4481–6.

    Article  CAS  PubMed  Google Scholar 

  29. Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L, Finegan SM, et al. Preparation, Gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med Chem Lett. 2011;5:385–90.

    Article  Google Scholar 

  30. Brown MF, Mitton-Fry MJ, Arcari JT, Barham R, Casavant J, Gerstenberger BS, et al. Pyridone-conjugated monobactam antibiotics with Gram-negative activity. J Med Chem. 2013;56:5541–52.

    Article  CAS  PubMed  Google Scholar 

  31. Tan L, Tao Y, Wang T, Zou F, Zhang S, Kou Q, et al. Discovery of novel pyridone-conjugated monosulfactams as potent and broad-spectrum antibiotics for multidrug-resistant gram-negative infections. J Med Chem. 2017;60:2669–84.

    Article  CAS  PubMed  Google Scholar 

  32. Xu B, Kong XL, Zhou T, Qiu DH, Chen YL, Liu MS, et al. Synthesis, iron (III)-binding affinity and in vitro evaluation of 3-hydroxypyridin-4-one hexadentate ligands as potential antimicrobial agents. Bioorg Med Chem Lett. 2011;21:6376–80.

    Article  CAS  PubMed  Google Scholar 

  33. Novais Â, Moniz T, Rebelo AR, Silva AM, Rangel M, Peixe L. New fluorescent rosamine chelator showing promising antibacterial activity against Gram-positive bacteria. Bioorg Chem. 2018;79:341–9.

    Article  CAS  PubMed  Google Scholar 

  34. Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, et al. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem. 2019;161:154–78.

    Article  CAS  PubMed  Google Scholar 

  35. Çevik K, Ulusoy S. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids. Iran J Basic Med Sci. 2015;18:758–63.

    PubMed  PubMed Central  Google Scholar 

  36. Li YB, Liu J, Huang ZX, Yu JH, Xu XF, Sun PH, et al. Design, synthesis and biological evaluation of 2-substituted 3-hydroxy-6-methyl-4H-pyran-4-one derivatives as Pseudomonas aeruginosa biofilm inhibitors. Eur J Med Chem. 2018;158:753–66.

    Article  CAS  PubMed  Google Scholar 

  37. Telleria EL, Martins-da-Silva A, Tempone AJ, Traub-Csekö YM. Leishmania, microbiota and sand fly immunity. Parasitology. 2018;145:1336–53.

    Article  PubMed  Google Scholar 

  38. Mohammadbeigi A, Khazaei S, Heidari H, Asgarian A, Arsangjang S, Saghafipour A, et al. An investigation of the effects of environmental and ecologic factors on cutaneous leishmaniasis in the old world: a systematic review study. Rev Environ Health. 2020;36:117–28.

    Article  PubMed  Google Scholar 

  39. Emami S, Tavangar P, Keighobadi M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem. 2017;135:241–59.

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues APD, Farias LHS, Carvalho ASC, Santos AS, do Nascimento JLM, Silva EO. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PloS one. 2014;9:e91259.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sheikhmoradi V, Saberi S, Saghaei L, Pestehchian N, Fassihi A. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands. Res Pharm Sci. 2018;13:111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47:309–16.

    PubMed  PubMed Central  Google Scholar 

  43. Mirzaei H, Shokrzadeh M, Modanloo M, Ziar A, Riazi GH, Emami S. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg Chem. 2017;75:86–98.

    Article  CAS  PubMed  Google Scholar 

  44. Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther. 2021;6:201.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Branosva J, Brtko J, Uher M, Novotny L. Antileukemic activity of 4-pyranone derivatives. Int J Biochem Cell Biol. 1995;27:701–6.

    Article  Google Scholar 

  46. Fickova M, Pravdova E, Rondhal L, Uher M, Brtko J. In vitro antiproliferative and cytotoxic activities of novel kojic acid derivatives: 5-benzyloxy-2- selenocyanatomethyl- and 5-methoxy-2- selenocyanatomethyl-4-pyranone. J Appl Toxicol. 2008;28:554–9.

    Article  CAS  PubMed  Google Scholar 

  47. Yoo DS, Lee J, Choi SS, Rho HS, Cho DH, Shin WC, et al. A modulatory effect of novel kojic acid derivatives on cancer cell proliferation and macrophage activation. Pharmazie. 2010;65:261–6.

    CAS  PubMed  Google Scholar 

  48. Chen Y-H, Lu P-J, Hulme C, Shaw AY. Synthesis of kojic acid-derived copper-chelating apoptosis inducing agents. Med Chem Res. 2013;22:995–1003.

    Article  CAS  Google Scholar 

  49. Fu Y, Yang Y, Zhou S, Liu Y, Yuan Y, Li S, et al. Ciprofloxacin containing Mannich base and its copper complex induce antitumor activity via different mechanism of action. Int J Oncol. 2014;5:2092–2100.

    Article  Google Scholar 

  50. Meier SM, Novak M, Kandioller W, Jakupec MA, Arion VB, Metzler-Nolte N, et al. Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chem Eur J. 2013;19:9297–307.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Y, Tao P, Wang M, Xu P, Lu W, Lei P, et al. Development of novel human lactate dehydrogenase A inhibitors: High-throughput screening, synthesis, and biological evaluations. Eur J Med Chem. 2019;177:105–15.

    Article  CAS  PubMed  Google Scholar 

  52. Parthasarathy K, Praveen C, Balachandran C, Senthil kumar P, Ignacimuthu S, Perumal PT. Cu(OTf)2 catalyzed three component reaction: Efficient synthesis of spiro[indoline-3,4'-pyrano[3,2-b]pyran derivatives and their anticancer potency towards A549 human lung cancer cell lines. Bioorg Med Chem Lett. 2013;23:2708–13.

    Article  CAS  PubMed  Google Scholar 

  53. Shahrisa A, Esmati S, Miri R, Firuzi O, Edraki N, Nejati M. Cytotoxic activity assessment, QSAR and docking study of novel bis-carboxamide derivatives of 4-pyrones synthesized by Ugi four-component reaction. Eur J Med Chem. 2013;66:388–99.

    Article  CAS  PubMed  Google Scholar 

  54. Li Y-B, Hou W, Lin H, Sun P-H, Lin J, Chen W-M. Design, synthesis and biological evaluation of novel 5-hydroxy-2-methyl-4H-pyran-4-one derivatives as antiglioma agents. Med Chem Comm. 2018;9:471–6.

    Article  CAS  Google Scholar 

  55. Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54:185–91.

    Article  PubMed  Google Scholar 

  56. Atkinson JG, Rokach YGJ, Rooney CS, McFarlane CS, Rackham A, Share NN. Kojic amine–a novel gamma-aminobutyric acid analogue. J Med Chem. 1979;22:99–106.

    Article  CAS  PubMed  Google Scholar 

  57. Pelley KA, Vaught JL. An antinociceptive profile of kojic amine: an analogue of gamma-aminobutyric acid (GABA). Neuropharmacology. 1987;26:301–7.

    Article  CAS  PubMed  Google Scholar 

  58. Aytemir MD, Çaliş Ü, Özalp M. Synthesis and evaluation of anticonvulsant and antimicrobial activities of 3‐hydroxy‐6‐methyl‐2‐substituted 4H‐pyran‐4‐one derivatives. Arch Pharm. 2004;337:281–8.

    Article  CAS  Google Scholar 

  59. Aytemir MD, Çalış Ü. Anticonvulsant and neurotoxicity evaluation of some novel kojic acids and allomaltol derivatives. Arch Pharm. 2010;343:173–81.

    Article  CAS  Google Scholar 

  60. Giacobini E. Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res. 2003;28:515–22.

    Article  CAS  PubMed  Google Scholar 

  61. Gouras GK, Olsson TT, Hansson O. β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics. 2015;12:3–11.

    Article  CAS  PubMed  Google Scholar 

  62. Huang H-C, Jiang Z-F. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis. 2009;16:15–27.

    Article  CAS  PubMed  Google Scholar 

  63. Prakash A, Dhaliwal GK, Kumar P, Majeed ABA. Brain biometals and Alzheimer’s disease–boon or bane? Int J Neurosci. 2017;127:99–108.

    Article  CAS  PubMed  Google Scholar 

  64. Lu C, Guo Y, Yan J, Luo Z, Luo H-B, Yan M, et al. Design, synthesis, and evaluation of multitarget-directed a derivatives for the treatment of Alzheimer’s disease. J Med Chem. 2013;56:5843–59.

    Article  CAS  PubMed  Google Scholar 

  65. Hider R, Ma Y, Molina-Holgado F, Gaeta A, Roy S. Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans. 2008;36:1304.

    Article  CAS  PubMed  Google Scholar 

  66. Tomic JL, Pensalfini A, Head E, Glabe CG. Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis. 2009;35:352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xu P, Zhang M, Sheng R, Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem. 2017;127:174–86.

    Article  CAS  PubMed  Google Scholar 

  68. Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. Jama. 1994;271:992–8.

    Article  CAS  PubMed  Google Scholar 

  69. Dgachi Y, Martin H, Malek R, Jun D, Janockova J, Sepsova V, et al. Synthesis and biological assessment of KojoTacrines as new agents for Alzheimer’s disease therapy. J Enzym Inhib Med Chem. 2019;34:163–70.

    Article  CAS  Google Scholar 

  70. Arya A, Jokar S, Etemadfar P, Malekzadeh J, Jannesar R, Rohani M, et al. Comparison of deferoxamine, deferiprone and deferasirox iron-chelating agents in reducing serum ferritin levels in patients with thalassemia major. J Clin Care Skill. 2020;1:189–93.

    Article  Google Scholar 

  71. Toso L, Crisponi G, Nurchi VM, Crespo-Alonso M, Lachowicz JI, Santos MA, et al. A family of hydroxypyrone ligands designed and synthesized as iron chelators. J Inorg Biochem. 2013;127:220–31.

    Article  CAS  PubMed  Google Scholar 

  72. Toso L, Crisponi G, Nurchi VM, Crespo-Alonso M, Lachowicz JI, Mansoori D, et al. Searching for new aluminium chelating agents: A family of hydroxypyrone ligands. J Inorg Biochem. 2014;130:112–21.

    Article  CAS  PubMed  Google Scholar 

  73. Ma Y, Luo W, Camplo M, Liu Z, Hider R. Novel iron-specific fluorescent probes. Bioorg Med Chem Lett. 2005;15:3450–2.

    Article  CAS  PubMed  Google Scholar 

  74. Nurchi VM, de M, Jaraquemada-Pelaez G, Crisponia G, Lachowicz JI, Cappai R, et al. A new tripodal kojic acid derivative for iron sequestration: Synthesis, protonation, complex formation studies with Fe3+, Al3+, Cu2+ and Zn2+, and in vivo bioassays. J Inorg Biochem. 2019;193:152–65.

    Article  CAS  PubMed  Google Scholar 

  75. Xie Y-Y, Lu Z, Kong X-L, Zhou T, Bansal S, Hider R. Systematic comparison of the mono-, dimethyl- and trimethyl 3- hydroxy-4(1H)-pyridones- Attempted optimization of the orally active iron chelator, deferiprone. Eur J Med Chem. 2016;115:132–40.

    Article  CAS  PubMed  Google Scholar 

  76. Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018;11:627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee M, Rho HS, Choi K. Anti-inflammatory effects of a P-coumaric acid and kojic acid derivative in LPS-stimulated RAW264.7 macrophage cells. Biotechnol Bioproc Engin. 2019;24:653–7.

    Article  CAS  Google Scholar 

  79. Rho HS, Goh MI, Lee JK, Ahn SM, Yeon JH, Yoo DS, et al. Ester derivatives of kojic acid and polyphenols containing adamantane moiety with tyrosinase inhibitory and anti-inflammatory properties. Bull Korean Chem Soc. 2011;32:1411–14.

    Article  CAS  Google Scholar 

  80. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019;20:4472.

    Article  CAS  PubMed Central  Google Scholar 

  81. Rho HS, Lee CS, Ahn SM, Hong YD, Shin SS, Park YH, et al. Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety. Bull Korean Chem Soc. 2011;32:4411–4.

    Article  CAS  Google Scholar 

  82. Chen YM, Li C, Zhang WJ, Shi Y, Wen ZJ, Chen QX, et al. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents. J Enzym Inhib Med Chem. 2019;34:990–8.

    Article  CAS  Google Scholar 

  83. Sharma DK, Pandey J, Tamrakar AK, Mukherjee D. Synthesis of heteroaryl/aryl kojic acid conjugates as stimulators of glucose uptake by GLUT4 translocation. Eur J Med Chem. 2014;85:727–736.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mazandaran University of Medical Sciences for financial support (grant No. 5396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Emami.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, S., Ahmadi, R., Ahadi, H. et al. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs. Med Chem Res 31, 1842–1861 (2022). https://doi.org/10.1007/s00044-022-02954-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02954-3

Keywords

Navigation