Skip to main content
Log in

The SAR-based development of small molecular HBV capsid assembly modulators

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Hepatitis B virus (HBV) infected about 296 million people worldwidely, while clinical useful therapeutic agents were still limited. Capsid assembly modulators (CAM) have been validated as efficient anti-HBV virus agents with the potential to achieve functional cure, therefore piqued much attention in recent years. There are various novel scaffold agents been developed and more than ten CAM candidates have been progressed into clinical trials with efficient anti-HBV activities. Herein, we summarised the SAR-based development of CAMs with various scaffolds, including heteroaryldihydropyrimidines (HAPs), phenylacrylamides (PPAs), sulfamoylbenzamides (SBAs), pyridazinone, bis-heterocycle, arylformamides, aminothiazoles, and others, which may provide new suggestions for the further development of CAMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee WM. Hepatitis B virus infection. N Engl J Med. 1997;337:1733–45. https://doi.org/10.1056/nejm199712113372406.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Hepatitis B Fact Sheet. Hepatitis-B. 2019. http://www.who.int/news-room/fact-sheets/detail/hepatitis-B.

  3. Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. Lancet. 2016;388:1081–8. https://doi.org/10.1016/s0140-6736(16)30579-7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lau KCK, Joshi SS, Gao S, Giles E, Swidinsky K, van Marle G, et al. Oncogenic HBV variants and integration are present in hepatic and lymphoid cells derived from chronic HBV patients. Cancer Lett. 2020;480:39–47. https://doi.org/10.1016/j.canlet.2020.03.022.

    Article  CAS  PubMed  Google Scholar 

  5. Clark DN, Hu J. Hepatitis B virus reverse transcriptase—target of current antiviral therapy and future drug development. Antivir Res. 2015;123:132–7. https://doi.org/10.1016/j.antiviral.2015.09.011.

    Article  CAS  PubMed  Google Scholar 

  6. Kang L, Pan J, Wu J, Hu J, Sun Q, Tang J. Anti-HBV drugs: progress, unmet needs, and new hope. Viruses. 2015;7:4960–77. https://doi.org/10.3390/v7092854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manzoor S, Saalim M, Imran M, Resham S, Ashraf J. Hepatitis B virus therapy: what’s the future holding for us? World J Gastroenterol. 2015;21:12558–75. https://doi.org/10.3748/wjg.v21.i44.12558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang TJ, Block TM, McMahon BJ, Ghany MG, Urban S, Guo J-T, et al. Present and future therapies of hepatitis B: from discovery to cure. Hepatology. 2015;62:1893–908. https://doi.org/10.1002/hep.28025.

    Article  PubMed  Google Scholar 

  9. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J, Levrero M, et al. Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure. Gut. 2015;64:1314–26. https://doi.org/10.1136/gutjnl-2014-308943.

    Article  CAS  PubMed  Google Scholar 

  10. Pei Y, Wang C, Yan SF, Liu G. Past, current, and future developments of therapeutic agents for treatment of chronic hepatitis B virus infection. J Med Chem. 2017;6:6461–79. https://doi.org/10.1021/acs.jmedchem.6b01442.

    Article  CAS  Google Scholar 

  11. Feng S, Gao L, Han X, Hu T, Hu Y, Liu H, et al. Discovery of small molecule therapeutics for treatment of chronic HBV infection. ACS Infect Dis. 2018;4:257–77. https://doi.org/10.1021/acsinfecdis.7b00144.

    Article  CAS  PubMed  Google Scholar 

  12. Cole AG. Modulators of HBV capsid assembly as an approach to treating hepatitis B virus infection. Curr Opin Pharm. 2016;30:131–7. https://doi.org/10.1016/j.coph.2016.08.004.

    Article  CAS  Google Scholar 

  13. Yang L, Lu M. Small molecule inhibitors of hepatitis B virus nucleocapsid assembly: a new approach to treat chronic HBV infection. Curr Med Chem. 2018;25:802–13. https://doi.org/10.2174/0929867324666170704121800.

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Liu F, Tong X, Hoffmann D, Zuo J, Lu M. Treatment of chronic hepatitis B virus infection using small molecule modulators of nucleocapsid assembly: recent advances and perspectives. ACS Infect Dis. 2019;5:713–24. https://doi.org/10.1021/acsinfecdis.8b00337.

    Article  CAS  PubMed  Google Scholar 

  15. Weber O, Schlemmer KH, Hartmann E, Hagelschuer I, Paessens A, Graef E, et al. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antivir Res. 2002;54:69–78. https://doi.org/10.1016/s0166-3542(01)00216-9.

    Article  CAS  PubMed  Google Scholar 

  16. Brezillon N, Brunelle M-N, Massinet H, Giang E, Lamant C, DaSilva L, et al. Antiviral activity of Bay 41-4109 on hepatitis B virus in humanized Alb-uPA/SCID mice. PLoS ONE. 2011;6:e25096. https://doi.org/10.1371/journal.pone.0025096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Deres K, Schroeder CH, Paessens A, Goldmann S, Hacker HJ, Weber O, et al. Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science. 2003;299:893–6. https://doi.org/10.1126/science.1077215.

    Article  CAS  PubMed  Google Scholar 

  18. Shi C, Wu C-Q, Cao A-M, Sheng H-Z, Yan X-Z, Liao M-Y. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats. Toxicol Lett. 2007;173:161–7. https://doi.org/10.1016/j.toxlet.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  19. Boucle S, Lu X, Bassit L, Ozturk T, Russell OI, Amblard F, et al. Synthesis and antiviral evaluation of novel heteroarylpyrimidines analogs as HBV capsid effectors. Bioorg Med Chem. 2017;27:904–10. https://doi.org/10.1016/j.bmcl.2017.01.010.

    Article  CAS  Google Scholar 

  20. Guan H, Zhao G, Chen W, Wu G, Liu H, Jiang X, et al. The novel compound Z060228 inhibits assembly of the HBV capsid. Life Sci. 2015;133:1–7. https://doi.org/10.1016/j.lfs.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X-Y, Wei Z-M, Wu G-Y, Wang J-H, Zhang Y-J, Li J, et al. In vitro inhibition of HBV replication by a novel compound, GLS4, and its efficacy against adefovir-dipivoxil-resistant HBV mutations. Antivir Ther. 2012;17:793–803. https://doi.org/10.3851/IMP2152.

    Article  CAS  PubMed  Google Scholar 

  22. Klumpp K, Lam AM, Lukacs C, Vogel R, Ren S, Espiritu C, et al. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein. Proc Natl Acad Sci USA. 2015;112:15196–201. https://doi.org/10.1073/pnas.1513803112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Zhou K, He H, Zhou Q, Sun Y, Hou L, et al. Design, synthesis, and evaluation of tetrahydropyrrolo 1,2-c pyrimidines as capsid assembly inhibitors for HBV treatment. Acs Med Chem Lett. 2017;8:969–74. https://doi.org/10.1021/acsmedchemlett.7b00288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ding Y, Zhang H, Niu J, Chen H, Liu C, Li X, et al. Multiple dose study of GLS4JHS, interfering with the assembly of hepatitis B virus core particles, in patients infected with hepatitis B virus. J Hepatol. 2017;66:S27–28. https://doi.org/10.1016/s0168-8278(17)30317-3.

    Article  Google Scholar 

  25. Ren Q, Liu X, Luo Z, Li J, Wang C, Goldmann S, et al. Discovery of hepatitis B virus capsid assembly inhibitors leading to a heteroaryldihydropyrimidine based clinical candidate (GLS4). Bioorg Med Chem. 2017;25:1042–56. https://doi.org/10.1016/j.bmc.2016.12.017.

  26. Dawood A, Basit SA, Jayaraj M, Gish RG. Drugs in development for hepatitis B. Drugs. 2017;77:1263–80. https://doi.org/10.1007/s40265-017-0769-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qiu Z, Lin X, Zhang W, Zhou M, Guo L, Kocer B, et al. Discovery and pre-clinical characterization of third-generation 4-H heteroaryldihydropyrimidine (HAP) analogues as hepatitis B virus (HBV) capsid inhibitors. J Med Chem. 2017;60:3352–71. https://doi.org/10.1021/acs.jmedchem.7b00083.

    Article  CAS  PubMed  Google Scholar 

  28. Ren Q, Liu X, Yan G, Nie B, Zou Z, Li J, et al. 3-((R)-4-(((R)-6-(2-Bromo-4-fluorophenyl)-5-(ethoxycarbonyl)-2-(thiazol- 2-yl)-3,6-dihydropyrimidin-4-yl)methyl)morpholin-2-yl)propanoic Acid (HEC72702), a novel hepatitis B virus capsid inhibitor based on clinical candidate GLS4. J Med Chem. 2018;61:1355–74. https://doi.org/10.1021/acs.jmedchem.7b01914.

    Article  CAS  PubMed  Google Scholar 

  29. Guo L, Hu T, Kou B, Lin X, Shen H, Shi H, et al. Inventors; Preparation of novel 6-fused heteroaryldihydropyrimidines for the treatment and prophylaxis of hepatitis B virus (HBV) infection patent. US20160083383A1. 2016.

  30. Ma Y, Zhao S, Ren Y, Cherukupalli S, Li Q, Woodson ME, et al. Design, synthesis and evaluation of heteroaryldihydropyrimidine analogues bearing spiro ring as hepatitis B virus capsid protein inhibitors. Eur J Med Chem. 2021;225:113780. https://doi.org/10.1016/j.ejmech.2021.113780.

    Article  CAS  PubMed  Google Scholar 

  31. Ladner SK, Otto MJ, Barker CS, Zaifert K, Wang GH, Guo JT, et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob Agents Chemother. 1997;41:1715–20. https://doi.org/10.1128/aac.41.8.1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. King RW, Ladner SK, Miller TJ, Zaifert K, Perni RB, Conway SC, et al. Inhibition of human hepatitis B virus replication by AT-61, a phenylpropenamide derivative, alone and in combination with (-)beta-L-2’,3’-dideoxy-3’-thiacytidine. Antimicrob Agents Chemother. 1998;42:3179–86. https://doi.org/10.1128/aac.42.12.3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perni RB, Conway SC, Ladner SK, Zaifert K, Otto MJ, King RW. Phenylpropenamide derivatives as inhibitors of hepatitis B virus replication. Bioorg Med Chem Lett. 2000;10:2687–90. https://doi.org/10.1016/s0960-894x(00)00544-8.

    Article  CAS  PubMed  Google Scholar 

  34. Feld JJ, Colledge D, Sozzi V, Edwards R, Littlejohn M, Locarnini SA. The phenylpropenamide derivative AT-130 blocks HBV replication at the level of viral RNA packaging. Antivir Res. 2007;76:168–77. https://doi.org/10.1016/j.antiviral.2007.06.014.

    Article  CAS  PubMed  Google Scholar 

  35. Katen SP, Tan Z, Chirapu SR, Finn MG, Zlotnick A. Assembly-directed antivirals differentially bind quasiequivalent pockets to modify hepatitis B virus capsid tertiary and quaternary structure. Structure. 2013;21:1406–16. https://doi.org/10.1016/j.str.2013.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu B, Huang Z, Liu C, Cai Z, Pan W, Cao P, et al. Synthesis and anti-hepatitis B virus activities of Matijing-Su derivatives. Bioorg Med Chem. 2009;17:3118–25. https://doi.org/10.1016/j.bmc.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  37. Qiu J, Xu B, Huang Z, Pan W, Cao P, Liu C, et al. Synthesis and biological evaluation of Matijing-Su derivatives as potent anti-HBV agents. Bioorg Med Chem. 2011;19:5352–60. https://doi.org/10.1016/j.bmc.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu J, Xu B, Gong Q, Pan W, Liu C, Huang Z, et al. Synthesis and biological evaluation of Matijin-Su derivatives as potential antihepatitis B virus and anticancer agents. Chem Biodivers. 2016;13:1584–92. https://doi.org/10.1002/cbdv.201600113.

    Article  CAS  PubMed  Google Scholar 

  39. Hu Z-X, Zhang Y-G, An Q, Xu B-X, Pan W-D, Cao P-X, et al. Development of a practical and scalable synthesis of anti-HBV drug Y101. Tetrahedron. 2014;70:9592–600. https://doi.org/10.1016/j.tet.2014.11.019.

    Article  CAS  Google Scholar 

  40. Qiu J, Gong Q, Gao J, Chen W, Zhang Y, Gu X, et al. Design, synthesis and evaluation of novel phenyl propionamide derivatives as non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem. 2018;144:424–34. https://doi.org/10.1016/j.ejmech.2017.12.042.

    Article  CAS  PubMed  Google Scholar 

  41. Campagna MR, Liu F, Mao R, Mills C, Cai D, Guo F, et al. Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids. J Virol. 2013;87:6931–42. https://doi.org/10.1128/jvi.00582-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vandyck K, Rombouts G, Stoops B, Tahri A, Vos A, Verschueren W, et al. Synthesis and evaluation of N-Phenyl-3-sulfamoyl-benzamide derivatives as capsid assembly modulators inhibiting hepatitis B virus (HBV). J Med Chem. 2018;61:6247–60. https://doi.org/10.1021/acs.jmedchem.8b00654.

    Article  CAS  PubMed  Google Scholar 

  43. Yogaratnam J, Zoulim F, Vandenbossche J, Lenz O, Talloen W, Moscalu I, et al. Safety, antiviral activity, and pharmacokinetics of a novel hepatitis B virus capsid assembly modulator, JNJ-56136379, in Asian and non-Asian patients with chronic hepatitis B. J Hepatol. 2019;70:E489–90. https://doi.org/10.1016/s0618-8278(19)30962-4.

    Article  Google Scholar 

  44. Vandyck K, Kesteleyn BRR, Pieters SMA, Rombouts G, Verschueren WG, Raboisson PJ-MB. Inventors; Preparation of glyoxamide substituted pyrrolamide derivatives and the use thereof as medicaments for the treatment of hepatitis B patent. WO2015011281A1. 2015.

  45. Lam AM, Espiritu C, Vogel R, Ren S, Lau V, Kelly M, et al. Preclinical characterization of NVR 3-778, a first-in-class capsid assembly modulator against hepatitis B virus. Antimicrob Agents Chemother. 2019;63:e01734–18. https://doi.org/10.1128/aac.01734-18.

    Article  CAS  PubMed  Google Scholar 

  46. Yuen MF, Kim DJ, Weilert F, Chan HLY, Lalezari JP, Hwang SG, et al. NVR 3-778, a first-in-class HBV core inhibitor, alone and in combination with PEG-interferon (PEGIFN), in treatment-naive HBEAG-positive patients: early reductions IN HBV DNA and HBEAG. J Hepatol. 2016;64:S210–11. https://doi.org/10.1016/s0168-8278(16)00175-6.

    Article  Google Scholar 

  47. Yuen MF, Gane EJ, Kim DJ, Weilert F, Chan HLY, Lalezari J, et al. Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR 3-778 in patients with chronic HBV infection. Gastroenterology. 2019;156:1392. https://doi.org/10.1053/j.gastro.2018.12.023.

    Article  CAS  PubMed  Google Scholar 

  48. Kuduk SD, Lam AM, Espiritu C, Vogel R, Lau V, Klumpp K, et al. SAR studies in the sulfonyl carboxamide class of HBV capsid assembly modulators. Bioorg Med Chem Lett. 2019;29:2405–9. https://doi.org/10.1016/j.bmcl.2019.05.029.

    Article  CAS  PubMed  Google Scholar 

  49. Na HG, Imran A, Kim K, Han HS, Lee YJ, Kim M-J, et al. Discovery of a new sulfonamide hepatitis B capsid assembly modulator. Acs Med Chem Lett. 2020;11:166–71. https://doi.org/10.1021/acsmedchemlett.9b00550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren Y, Ma Y, Cherukupalli S, Tavis JE, Menendez-Arias L, Liu X, et al. Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. Eur J Med Chem. 2020;206:112714. https://doi.org/10.1016/j.ejmech.2020.112714.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y-J, Lu D, Xu Y-B, Xing W-Q, Tong X-K, Wang G-F, et al. A novel pyridazinone derivative inhibits hepatitis B virus replication by inducing genome-free capsid formation. Antimicrob Agents Chemother. 2015;59:7061–72. https://doi.org/10.1128/aac.01558-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lu D, Liu F, Xing W, Tong X, Wang L, Wang Y, et al. Optimization and synthesis of pyridazinone derivatives as novel inhibitors of hepatitis B virus by inducing genome-free capsid formation. ACS Infect Dis. 2017;3:199–205. https://doi.org/10.1021/acsinfecdis.6b00159.

    Article  CAS  PubMed  Google Scholar 

  53. Chen W, Liu F, Zhao Q, Ma X, Lu D, Li H, et al. Discovery of phthalazinone derivatives as novel hepatitis B virus capsid inhibitors. J Med Chem. 2020;63:8134–45. https://doi.org/10.1021/acs.jmedchem.0c00346.

    Article  CAS  PubMed  Google Scholar 

  54. Hwang N, Ban H, Chen J, Ma J, Liu H, Lam P, et al. Synthesis of 4-oxotetrahydropyrimidine-1(2H)-carboxamides derivatives as capsid assembly modulators of hepatitis B virus. Med Chem Res. 2021;30:459–72. https://doi.org/10.1007/s00044-020-02677-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen H-J, Wang W-L, Wang G-F, Shi L-P, Gu M, Ren Y-D, et al. Rational design and synthesis of 2,2-bisheterocycle tandem derivatives as non-nucleoside hepatitis B virus inhibitors. Chemmedchem. 2008;3:1316–21. https://doi.org/10.1002/cmdc.200800136.

    Article  CAS  PubMed  Google Scholar 

  56. Yang L, Shi L-P, Chen H-J, Tong X-K, Wang G-F, Zhang Y-M, et al. Isothiafludine, a novel non-nucleoside compound, inhibits hepatitis B virus replication through blocking pregenomic RNA encapsidation. Acta Pharm Sin. 2014;35:410–8. https://doi.org/10.1038/aps.2013.175.

    Article  CAS  Google Scholar 

  57. Ruan L, Hadden JA, Zlotnick A. Assembly properties of hepatitis B virus core protein mutants correlate with their resistance to assembly-directed antivirals. J Virol. 2018;92:e01082–1118. https://doi.org/10.1128/jvi.01082-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang X, Cheng J, Ma J, Hu Z, Wu S, Hwang N, et al. Discovery of novel hepatitis B virus nucleocapsid assembly inhibitors. ACS Infect Dis. 2019;5:759–68. https://doi.org/10.1021/acsinfecdis.8b00269.

    Article  CAS  PubMed  Google Scholar 

  59. Huber AD, Pineda DL, Liu D, Boschert KN, Gres AT, Wolf JJ, et al. Novel hepatitis B virus capsid-targeting antiviral that aggregates core particles and inhibits nuclear entry of viral cores. ACS Infect Dis. 2019;5:750–8. https://doi.org/10.1021/acsinfecdis.8b00235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang J, Huber AD, Pineda DL, Boschert KN, Wolf JJ, Kankanala J, et al. 5-Aminothiophene-2,4-dicarboxamide analogues as hepatitis B virus capsid assembly effectors. Eur J Med Chem. 2019;164:179–92. https://doi.org/10.1016/j.ejmech.2018.12.047.

    Article  CAS  PubMed  Google Scholar 

  61. Vandyck K, Last SJ, Raboisson PJ-MB. Inventors; Sulfamoyl-arylamides and the use thereof as medicaments for the treatment of hepatitis b patent. US20160002155A1. 2016.

  62. Schinazi RF, Boucle S, Amblard F, Sari O, Bassit L. Inventors; Preparation of pyrrolecarboxamides as antiviral agents useful in treatment of hepatitis B virus infection patent. WO2017156255A1. 2017.

  63. Du J, Kaplan JA, Kirschberg TA, Kobayashi T, Lazerwith SE, Lee RA, et al. Inventors; Preparation of substituted pyrrolizine compounds for inhibiting HBV replication patent. WO2018039531A1. 2018.

  64. Cho MH, Jeong H, Kim YS, Kim JW, Jung G. 2-Amino-N-(2,6-dichloropyridin-3-yl)acetamide derivatives as a novel class of HBV capsid assembly inhibitor. J Viral Hepat. 2014;21:843–52. https://doi.org/10.1111/jvh.12214.

    Article  CAS  PubMed  Google Scholar 

  65. Pei Y, Wang C, Ben H, Wang L, Ma Y, Ma Q, et al. Discovery of new hepatitis B virus capsid assembly modulators by an optimal high-throughput cell-based assay. ACS Infect Dis. 2019;5:778–87. https://doi.org/10.1021/acsinfecdis.9b00030.

    Article  CAS  PubMed  Google Scholar 

  66. Pan T, Ding Y, Wu L, Liang L, He X, Li Q, et al. Design and synthesis of aminothiazole based hepatitis B virus (HBV) capsid inhibitors. Eur J Med Chem. 2019;166:480–501. https://doi.org/10.1016/j.ejmech.2019.01.059.

    Article  CAS  PubMed  Google Scholar 

  67. Qiu J, Chen W, Zhang Y, Zhou Q, Chen J, Yang L, et al. Assessment of quinazolinone derivatives as novel non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem. 2019;176:41–49. https://doi.org/10.1016/j.ejmech.2019.05.014.

    Article  CAS  PubMed  Google Scholar 

  68. Kang J-A, Kim S, Park M, Park H-J, Kim J-H, Park S, et al. Ciclopirox inhibits hepatitis B virus secretion by blocking capsid assembly. Nat Commun. 2019;10:2184. https://doi.org/10.1038/s41467-019-10200-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen H, Raney AK, Allan MJ, Song J, Lang SA. Inventors; Preparation of thiazolidinones, oxazolidinones, and pyrrolidinones for the treatment of Hepatitis B infection patent. WO2007014023A1. 2007.

  70. Chen H. Inventor; Preparation of the pyrazole-oxazolidinone compounds for anti-hepatitis B virus patent. WO2017173999A1. 2017.

  71. Kuduk SD, Stoops B, Alexander R, Lam AM, Espiritu C, Vogel R, et al. Identification of a new class of HBV capsid assembly modulator. Bioorg Med Chem Lett. 2021;39:127848. https://doi.org/10.1016/j.bmcl.2021.127848.

    Article  CAS  PubMed  Google Scholar 

  72. Kuduk SD, Stoops B, Lam AM, Espiritu C, Vogel R, Lau V, et al. Oxadiazepinone HBV capsid assembly modulators. Bioorg Med Chem Lett. 2021;52:128353. https://doi.org/10.1016/j.bmcl.2021.128353.

    Article  CAS  PubMed  Google Scholar 

  73. Kuduk SD, DeRatt LG, Stoops B, Shaffer P, Lam AM, Espiritu C, et al. Diazepinone HBV capsid assembly modulators. Bioorg Med Chem Lett. 2022;72:128823. https://doi.org/10.1016/j.bmcl.2022.128823.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Wang Z, Liu J, Wang Y, Wu R, Sheng R, et al. Discovery of novel HBV capsid assembly modulators by structure-based virtual screening and bioassays. Bioorg Med Chem. 2021;36:116096. https://doi.org/10.1016/j.bmc.2021.116096.

    Article  CAS  PubMed  Google Scholar 

  75. Turner W, Arnold LD, Maag H, Bures M. Inventors; Hepatitis B core protein modulators patent. WO2017048954 A1. 2017.

  76. Hu YB, Sun F, Ding ZZ. Inventors; Preparation method of oxazepine compound patent. CN112390816 A. 2021.

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 21877097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Sheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This review refrains from misrepresenting research results, maintains integrity of research and follows the rules of good scientific practice.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Tao, X. et al. The SAR-based development of small molecular HBV capsid assembly modulators. Med Chem Res 31, 1414–1430 (2022). https://doi.org/10.1007/s00044-022-02936-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02936-5

Keywords

Navigation