Skip to main content
Log in

Synthesis, antifungal activity, and molecular dynamics study of novel geranyl aromatic sulfonamide compounds as potential complex III inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Essential oils (EOs), as unique natural products, are promising resources for the discovery of green agrochemicals. The main ingredient geraniol of citronella oil was found to exhibit substantial antifungal activities in this study. Therefore, a series of novel geranyl aromatic sulfonamide compounds were synthesized and found to display considerable antifungal activities. Two geranyl thiofuran-sulfonamide compounds 4c-1 (median effective concentration (EC50) against Rhizoctonia solani: 24.97 mg/L and EC50 against Sclerotinia sclerotiorum: 27.26 mg/L), 4c-2 (EC50 against S. sclerotiorum: 18.53 mg/L) and one geranyl pyridine-sulfonamide compound 4d-2 (EC50 against R. solani: 29.31 mg/L and EC50 against S. sclerotiorum: 29.98 mg/L) were screened as “star molecules” due to their excellent antifungal activities. The preliminary structure-activity relationship (SAR) study revealed that the introduction of various aromatic heterocycles maybe an efficient protocol to improve the fungicidal activities of geranyl aromatic sulfonamide compounds. The molecular mechanisms of the geranyl aromatic sulfonamide compounds were clarified by performing molecular docking and molecular dynamics (MD) simulations. Three “star molecules” of these geranyl aromatic sulfonamide compounds were found to bind to Complex III through several hydrogen bonds and π-interactions with crucial residues TRP17, GLY20 etc. Their binding free energies were calculated to be strong ranging from −50.60 to −39.44 kcal/mol by MM/GBSA method, which suggested the geranyl aromatic sulfonamide compounds were potential Complex III inhibitors. The main component originating from the natural plant EOs ought to be studied in the future to discover novel pathogenic fungicidal candidates.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wodnicka A, Huzar E, Krawczyk M, Kwiecien H. Synthesis and antifungal activity of new salicylic acid derivatives. Pol J Chem Technol. 2017;19:143–8. https://doi.org/10.1515/pjct-2017-0019

    Article  CAS  Google Scholar 

  2. Zhang C, Gao X, Zhou Y, Liu X. Research progress on mode action and molecular resistance mechanism of complex III inhibitors in cellular respiration chain. Chin J Pestic Sci. 2019;21:747–58. https://doi.org/10.16801/j.issn.1008-7303.2019.0096

    Article  Google Scholar 

  3. Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94:223–53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  CAS  Google Scholar 

  4. Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. J Ess Oil Res. 2020;32:279–95. https://doi.org/10.1080/10412905.2020.1746698

    Article  CAS  Google Scholar 

  5. Nazzaro F, Fratianni F, Coppola R, De Feo V. Essential oils and antifungal activity. Pharmaceuticals. 2017;10:20 https://doi.org/10.3390/ph10040086

    Article  CAS  Google Scholar 

  6. Rodríguez A, Batlle R, Nerín C. The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Prog Org Coat. 2007;60:33–8. https://doi.org/10.1016/j.porgcoat.2007.06.006

    Article  CAS  Google Scholar 

  7. Walker CH. The significance of pesticide residues in the environment. Outlook Agr. 1976;9:16–20.

    Article  Google Scholar 

  8. Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules. 2021;26:24 https://doi.org/10.3390/molecules26030666

    Article  CAS  Google Scholar 

  9. Kordali S, Cakir A, Ozer H, Cakmakci R, Kesdek M, Mete E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour Technol. 2008;99:8788–95. https://doi.org/10.1016/j.biortech.2008.04.048

    Article  CAS  PubMed  Google Scholar 

  10. Silva W, Dória G, Maia R, Nunes R, Carvalho G, Blank A, et al. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol. 2008;99:3251–5. https://doi.org/10.1016/j.biortech.2007.05.064

    Article  CAS  PubMed  Google Scholar 

  11. Prudent D, Perineau F, Bessiere J, Michel G, Baccou J. Analysis of the essential oil of wild oregano from Martinique (Coleus aromaticus Benth.)—evaluation of its bacteriostatic and fungistatic properties. J Ess Oil Res. 1995;7:165–73. https://doi.org/10.1080/10412905.1995.9698492

    Article  CAS  Google Scholar 

  12. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86:985–90. https://doi.org/10.1046/j.1365-2672.1999.00780.x

    Article  CAS  PubMed  Google Scholar 

  13. Hammer K, Carson C, Riley T. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95:853–60. https://doi.org/10.1046/j.1365-2672.2003.02059.x

    Article  CAS  PubMed  Google Scholar 

  14. Xing Y, Li X, Xu Q, Yun J, Lu Y. Original article: Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Food Sci Technol. 2010;45:1837–42. https://doi.org/10.1111/j.1365-2621.2010.02342.x

    Article  CAS  Google Scholar 

  15. Specos MMM, García JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MVD, et al. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg. 2010;104:653–8. https://doi.org/10.1016/j.trstmh.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Pinheiro PF, Queiroz VTD, Rondelli VM, Costa AV, Marcelino TDP, Pratissoli D. Insecticidal activity of citronella grass essential oil on Frankliniella schultzei and Myzus persicae. Cienc Agrotec. 2013;37:138–44. https://doi.org/10.1590/S1413-70542013000200004

    Article  CAS  Google Scholar 

  17. Lertsatitthanakorn P, Taweechaisupapong S, Aromdee C, Khunkitti W. Antibacterial activity of citronella oil solid lipid particles in oleogel against Propionibacterium acnes and its chemical stability. Int J Hydrog Energy. 2008;2:167–71.

    CAS  Google Scholar 

  18. Li WR, Shi QS, Ouyang YS, Chen YB, Duan SS. Antifungal effects of citronella oil against Aspergillus niger ATCC 16404. Appl Microbiol Biot. 2013;97:7483–92. https://doi.org/10.1007/s00253-012-4460-y

    Article  CAS  Google Scholar 

  19. Jantamas S, Matan N, Aewsiri T. Improvement of antifungal activity of citronella oil against Aspergillus flavus on rubberwood (Hevea brasiliensis) using heat curing. J Trop Sci. 2016;28:39–47.

    Google Scholar 

  20. Pereira FDO, Mendes JM, Lima IO, Mota KSDL, Oliveira WAD, Lima EDO. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis. Pharm Biol. 2015;53:228–34. https://doi.org/10.3109/13880209.2014.913299

    Article  CAS  Google Scholar 

  21. Singh S, Fatima Z, Ahmad K, Hameed S. Fungicidal action of geraniol against Candida albicans is potentiated by abrogated CaCdr1p drug efflux and fluconazole synergism. Plos One. 2018;13. https://doi.org/10.1371/journal.pone.0203079

  22. Huang LS, Cobessi D, Tung EY, Berry EA. Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc(1) complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol. Biol. 2005;351:573–97. https://doi.org/10.1016/j.jmb.2005.05.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun C, Benlekbir S, Venkatakrishnan P, Wang YH, Hong SJ, Hosler J, et al. Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature. 2018;557:123–6. https://doi.org/10.1038/s41586-018-0061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Manag Sci. 2002;58:859–67. https://doi.org/10.1002/ps.565

    Article  CAS  PubMed  Google Scholar 

  25. Vonjagow G, Engel WD. Complete inhibition of electron transfer from ubiquinol to cytochrome b by the combined action of antimycin and myxothiazol. FEBS Lett. 1981;136:19–24. https://doi.org/10.1016/0014-5793(81)81206-9

    Article  CAS  Google Scholar 

  26. Cheng H, Shen YQ, Pan XY, Hou YP, Wu QY, Yang GF. Discovery of 1,2,4-triazole-1,3-disulfonamides as dual inhibitors of mitochondrial complex II and complex III. N J Chem. 2015;39:7281–92. https://doi.org/10.1039/c5nj00215j

    Article  CAS  Google Scholar 

  27. Cheng H, Liu HF, Yang L, Zhang R, Chen C, Wu Y, et al. N-(3,5-Dichloro-4-(2,4,6-trichlorophenoxy)phenyl)benzenesulfonamide: a new dual-target inhibitor of mitochondrial complex II and complex III via structural simplification. Bioorg Med Chem. 2020;28:115299 https://doi.org/10.1016/j.bmc.2019.115299

    Article  CAS  PubMed  Google Scholar 

  28. Ali EOM, Shakil NA, Rana VS, Sarkar DJ, Majumder S, Kaushik P, et al. Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind Crop Prod. 2017;108:379–87. https://doi.org/10.1016/j.indcrop.2017.06.061

    Article  CAS  Google Scholar 

  29. Fisher N, Meunier B, Biagini GA. The cytochrome bc(1) complex as an antipathogenic target. FEBS Lett. 2020;594:2935–52. https://doi.org/10.1002/1873-3468.13868

    Article  CAS  PubMed  Google Scholar 

  30. Al-Karmalawy AA, Dahab MA, Metwaly AM, Elhady SS, Elkaeed EB, Eissa IH, et al. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Front Chem. 2021;9. https://doi.org/10.3389/fchem.2021.661230

  31. Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - anin silicodocking and molecular dynamics simulation study. J Biomol Struct Dyn. 2021;39:4362–74. https://doi.org/10.1080/07391102.2020.1779818

    Article  CAS  PubMed  Google Scholar 

  32. Zhang XB, Lei P, Sun TD, Jin XY, Yang XL, Ling Y. Design, synthesis, and fungicidal activity of novel thiosemicarbazide derivatives containing piperidine fragments. Molecules. 2017;22:13 https://doi.org/10.3390/molecules22122085

    Article  Google Scholar 

  33. Pham TA, Jain AN. Parameter estimation for scoring protein-ligand interactions using negative training data. J Med Chem. 2006;49:5856–68. https://doi.org/10.1021/jm050040j

    Article  CAS  PubMed  Google Scholar 

  34. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem. 2003;24:1999–2012. https://doi.org/10.1002/jcc.10349

    Article  CAS  PubMed  Google Scholar 

  35. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  37. Schrodinger, LLC. The PyMOL molecular graphics system, Version 1.8. 2015.

  38. SYSTÈMES D. BIOVIA Discovery Studio. Dassault Syst mes BIOVIA, Discovery Studio Modeling Environment, Release 2017: Dassault Syst mes. 2016.

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (no. 31772207), a grant from the National Key Research and Development Plan (no. 2017YFD0200504) and the State Key Laboratory for Biology of Plant Diseases and Insect Pests (no. SKLOF201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxia Duan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Jiang, Z., Li, J. et al. Synthesis, antifungal activity, and molecular dynamics study of novel geranyl aromatic sulfonamide compounds as potential complex III inhibitors. Med Chem Res 31, 628–642 (2022). https://doi.org/10.1007/s00044-022-02864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02864-4

Keywords

Navigation