Skip to main content

Advertisement

Log in

Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel thiosemicarbazone analogs (4at, 6aj) were synthesized and evaluated for their cytotoxic activities. The obtained results showed that thiochromanone-based thiosemicarbazones substituted primarily at the C-8 position exhibited higher cytotoxicity than the corresponding 1,1-dioxo-thiochromanone-, benzothiazepine-, and 1,1-dioxo-benzothiazepine-based analogs. Significantly, compound 4c (8-fluoro thiochromanone thiosemicarbazone) was found to be the most active and exhibited potent cytotoxicity against the MCF-7, SK-mel-2, and DU145 cancer cell lines, with IC50 values of 0.42, 0.58, and 0.43 µM, respectively. In addition, the mechanism of compound 4c induced MCF-7 cell apoptosis was preliminarily investigated through cell cycle, Annexin V-FITC/PI staining, and ROS assays, indicating that compound 4c may exert its anticancer property through ROS-mediated apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achkar IW, Abdulrahman N, Al-Sulaiti H, Joseph JM, Uddin S, Mraiche F (2018) Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J Transl Med 16:96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benítez-Bribiesca L, Martínez G, Ruíz MT, Gutiérrez-Delgado F, Utrera D (1995) Proteinase activity in invasive cancer of the breast. Arch Med Res 26:163–168

    Google Scholar 

  • Bisceglie F, Musiari A, Pinelli S, Alinovi R, Menozzi I, Polverini E, Tarasconi P, Tavone M, Pelosi G (2015) Quinoline-2-carboxaldehyde thiosemicarbazones and their Cu (II) and Ni (II) complexes as topoisomerase IIa inhibitors. Inorg Biochem 152:10–19

    CAS  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Google Scholar 

  • Cao W, Qi J, Qian K, Tian L, Cheng Z, Wang Y (2019) Structure−activity relationships of 2-quinolinecarboxaldehyde thiosemicarbazone gallium (III) complexes with potent and selective anticancer activity. J Inorg Biochem 191:174–182

    CAS  PubMed  Google Scholar 

  • Chavarria GE, Horsman MR, Arispe WM, Kumar GDK, Chen SE, Strecker TE, Parker EN, Chaplin DJ, Pinney KG, Trawick ML (2012) Initial evaluation of the antitumor activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of cathepsin L. Eur J Med Chem 58:568–572

    CAS  PubMed  Google Scholar 

  • Chen B, Platt MO (2011) Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J Transl Med 9:1479–5876

    Google Scholar 

  • Chen X, Hu Y, Zhang W, Chen K, Hu J, Li X, Liang L, Cai X, Hu J, Wang K, Huang A, Tang N (2019) Cisplatin induces autophagy to enhance hepatitis B virus replication via activation of ROS/JNK and inhibition of the Akt/mTOR pathway. Free Radic Bio Med 131:225–236

    CAS  Google Scholar 

  • Czubatka-Bieńkowska A, Sarnik J, Macieja A, Galita G, Witczak ZJ, Poplawski T (2017) Thio-functionalized carbohydrate thiosemicarbazones and evaluation of their anticancer activity. Bioorg Med Chem Lett 27:2713–2720

    PubMed  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharm 740:364–378

    CAS  Google Scholar 

  • De Siqueira LRP, de Moraes Gomes PAT, de Lima Ferreira LP, de Melo Rêgo MJB, Leite ACL (2019) Multi-target compounds acting in cancer progression: focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur J Med Chem 170:237–260

    PubMed  Google Scholar 

  • Demirayak S, Yurttas L, Gundogdu-Karaburun N, Karaburun AC, Kayagil I (2017) New chroman-4-one/thiochroman-4-one derivatives as potential anticancer agents. Saudi Pharm J 25:1063–1072

    PubMed  PubMed Central  Google Scholar 

  • Deng J, Yu P, Zhang Z, Wang J, Cai J, Wu N, Sun H, Liang H, Yang F (2018) Designing anticancer copper(II) complexes by optimizing 2-pyridine-thiosemicarbazone ligands. Eur J Med Chem 158:442–452

    CAS  PubMed  Google Scholar 

  • Friedrich B, Jung K, Lein M, Türk I, Rudolph B, Hampel G, Schnorr D, Loening SA (1999) Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur J Cancer 35:138–144

    CAS  PubMed  Google Scholar 

  • Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZL, Richardson DR, Kalinowski DS, Kovacevic Z, Tan-Un KC, Chan GC (2016) The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. J Hematol Oncol 9:98

    PubMed  PubMed Central  Google Scholar 

  • Hannon MJ (2007) Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl Chem 79:2243–2261

    CAS  Google Scholar 

  • He Z, Qiao H, Yang F, Zhou W, Gong Y, Zhang X, Wang H, Zhao B, Ma L, Liu H, Zhao W (2019) Novel thiosemicarbazone derivatives containing indole fragment as potent and selective anticancer agent. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2019.111764

    CAS  PubMed  Google Scholar 

  • Ho GY, Woodward N, Coward JI (2016) Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol 102:37–46

    PubMed  Google Scholar 

  • Işeri S, Ercan F, Gedik N, Yüksel M, Alican I (2007) Simvastatin attenuates cisplatin-induced kidney and liver damage in rats. Toxicology 230:256–264

    PubMed  Google Scholar 

  • Joyce JA, Baruch A, Chehade K, Meyer-Morse N, Giraudo E, Tsai FY, Greenbaum DC, Hager JH, Bogyo M, Hanahan D (2004) Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5:443–453

    CAS  PubMed  Google Scholar 

  • Kalai Selvi S, Vinoth A, Varadharajan T, Weng CF, Vijaya Padma V (2017) Neferine augments therapeutic efficacy of cisplatin through ROS-mediated non-canonical autophagy in human lung adenocarcinoma (A549 cells). Food Chem Toxicol 103:28–40

    CAS  PubMed  Google Scholar 

  • Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584

    CAS  PubMed  Google Scholar 

  • Kılıç-Cıkla I, Güveli Ş, Yavuz M, Bal-Demirci T, Ülküseven B (2016) 5-Methyl-2-hydroxy-acetophenone-thiosemicarbazone and its nickel(II) complex: crystallographic, spectroscopic (IR, NMR and UV) and DFT studies. Polyhedron 105:104–114

    Google Scholar 

  • Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharm 834:188–196

    CAS  Google Scholar 

  • Li C, Yang C, Liu Y, Yang G, Liu T, Lu Q (2010) Antitumor activities of (Z)-3-(chloromethylene)-6-methylthiochroman-4-one in vitro. Chin Sci Bull 55:3027–3031

    Google Scholar 

  • Lu Y, Cederbaum AI (2006) Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol Sci 89:515–523

    CAS  PubMed  Google Scholar 

  • Ma B, Goh BC, Tan EH, Lam KC, Soo R, Leong SS, Wang LZ, Mo F, Chan AT, Zee B, Mok T (2008) A multicenter phase II trial of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, Triapine®) and gemcitabine in advanced non-small-cell lung cancer with pharmacokinetic evaluation using peripheral blood mononuclear cells. Investig New Drugs 26:169–173

    CAS  Google Scholar 

  • Mackenzie MJ, Saltman D, Hirte H, Low J, Johnson C, Pond G, Moore MJ (2007) A phase II study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) and gemcitabine in advanced pancreatic carcinoma. A trial of the princess margaret hospital phase II consortium. Investig New Drugs 25:553–558

    CAS  Google Scholar 

  • Merlot AM, Kalinowski DS, Richardson DR (2013) Novel chelators for cancer treatment: where are we now? Antioxid Redox Signal 18:973–1006

    CAS  PubMed  Google Scholar 

  • Ocana A, Pandiella A, Siu LL, Tannock IF (2011) Preclinical development of molecular-targeted agents for cancer. Nat Rev Clin Oncol 8:200–209

    CAS  Google Scholar 

  • Parker EN, Song J, Kishore Kumar GD, Odutola SO, Chavarria GE, Charlton-Sevcika AK, Strecker TE, Barnes AL, Sudhan DR, Wittenborn TR, Siemann DW, Horsman MR, Chaplin DJ, Trawick ML, Pinney KG (2015) Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L. Bioorg Med Chem 23:6974–6992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pati ML, Niso M, Spitzer D, Berardi F, Contino M, Riganti C, Hawkins WG, Abate C (2018) Multifunctional thiosemicarbazones and deconstructed analogues as a strategy to study the involvement of metal chelation, Sigma-2 (σ2) receptor and P-gp protein in the cytotoxic action: in vitro and in vivo activity in pancreatic tumors. Eur J Med Chem 144:359–371

    CAS  PubMed  Google Scholar 

  • Petrović M, Todorović D (2016) Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Facta Universitatis Ser: Med Biol 18:12–18

    Google Scholar 

  • Prat A, Baselga J (2008) The role of hormonal therapy in the management of hormonal-receptor-positive breast cancer with co-expression of HER2. Nat Clin Pr Oncol 5:531–542

    CAS  Google Scholar 

  • Qi J, Yao Q, Qian K, Tian L, Cheng Z, Yang D, Wang Y (2018) Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents. Eur J Med Chem 154:91–100

    CAS  PubMed  Google Scholar 

  • Quiroga AG, Ranninger CN (2004) Contribution to the SAR field of metallated and coordination complexes: studies of the palladium and platinum derivatives with selected thiosemicarbazones as antitumoral drugs. Coord Chem Rev 248:119–133

    CAS  Google Scholar 

  • Rawat D (2008) Editorial [Hot Topic: recent advances in cancer chemotherapy-part I(guest editor: Diwan S. Rawat)] Anti-Cancer Agents Med Chem 8(2):122–122

  • Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11:805–812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheth S, Mukherjea D, Rybak LP, Ramkumar V (2017) Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci 11:338

    PubMed  PubMed Central  Google Scholar 

  • Song J, Jones LM, Kumar GD, Conner ES, Bayeh L, Chavarria GE, Charlton-Sevcik AK, Chen SE, Chaplin DJ, Trawick ML, Pinney KG (2012) Synthesis and biochemical evaluation of thiochromanone thiosemicarbazone analogues as inhibitors of cathepsin L. ACS Med Chem Lett 3:450–453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Jones LM, Chavarria GE, Charlton-Sevcik AK, Jantz A, Johansen A, Bayeh L, Soeung V, Snyder LK, Lade Jr SD, Chaplin DJ, Trawick ML, Pinney KG (2013) Small-molecule inhibitors of cathepsin L incorporating functionalized ring-fused molecular frameworks. Bioorg Med Chem Lett 23:2801–2807

    CAS  PubMed  Google Scholar 

  • Subasi E, Atalay EB, Erdogan D, Sen B, Pakyapan B, Kayali HA (2020) Synthesis and characterization of thiosemicarbazone-functionalized organoruthenium (II)-arene complexes: Investigation of antitumor characteristics in colorectal cancer cell lines. Mater Sci Eng C https://doi.org/10.1016/j.msec.2019.110152

    CAS  Google Scholar 

  • Taşdemir D, Karaküçük-İyidoğan A, Ulaşli M, Taşkin-Tok T, Oruç-Emre EE, Bayram H (2015) Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents. Chirality 27:177–188

    PubMed  Google Scholar 

  • Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:1005–1028

    Google Scholar 

  • Tian X, Song E, Pi R, Zhu X, Liu L, Ma X, Dong H, Liu J, Song Y (2012) Polychlorinated biphenyls and their different level metabolites as inhibitors of glutathione S-transferase isoenzymes. Chem Biol Interact 198:1–8

    CAS  PubMed  Google Scholar 

  • Vurusaner B, Poli G, Basaga H (2012) Tumor suppressor genes and ROS: complex networks of interactions. Free Radic Biol Med 52:7–18

    CAS  PubMed  Google Scholar 

  • Wadler S, Makower D, Clairmont C, Lambert P, Fehn K, Sznol M (2004) Phase I and pharmacokinetic study of the ribonucleotide reductase inhibitor, 3-aminopyridine-2-carboxaldehyde thiosemicarbazone, administered by 96-hour intravenous continuous infusion. J Clin Oncol 22:1553–1556

    CAS  PubMed  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    CAS  Google Scholar 

  • Wang HC, Choudhary S (2011) Reactive oxygen species-mediated therapeutic control of bladder cancer. Nat Rev Urol 8:608–616

    CAS  PubMed  Google Scholar 

  • Whitnall M, Howard J, Ponka P, Richardson DR (2006) A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proc Natl Acad Sci USA 103:14901–14906

    CAS  PubMed  Google Scholar 

  • Yuan J, Lovejoy DB, Richardson DR (2004) Novel di-2-pyridyl–derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood 104:1450–1458

    CAS  PubMed  Google Scholar 

  • Zhao Y, Guo C, Wang L, Wang S, Li X, Jiang B, Wu N, Guo S, Zhang R, Liu K, Shi D (2017) A novel fluorinated thiosemicarbazone derivative-2-(3,4-difluorobenzylidene) hydrazine carbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway. Biochem Biophys Res Commun 491:65–71

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21502085), Special Funds for Public Welfare Research and Capacity Building of Guangdong Province (Nos. 2016A010103042 and 2015A020211038), the Research Group of Rare Earth Resource Exploiting and Luminescent Materials (2017KCXTD022), and Lingnan Normal University Science Research Foundation (No. ZL1401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenggui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Pan, R., Li, G. et al. Synthesis and anticancer activities of thiosemicarbazones derivatives of thiochromanones and related scaffolds. Med Chem Res 29, 630–642 (2020). https://doi.org/10.1007/s00044-020-02503-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02503-w

Keywords

Navigation