Skip to main content

Advertisement

Log in

Implementation of pharmacophore-based 3D QSAR model and scaffold analysis in order to excavate pristine ALK inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The utilisation of anaplastic lymphoma kinase (ALK) inhibitors has unveiled a magnificent clinical activity in ALK-positive non-small cell lung cancer (NSCLC), as well as against the sanctuary site of CNS in selected patients. However, the unsatisfactory survival rates along with unaccomplished overall cure for NSCLC (specifically in metastatic diseases), create an importunity for superior and perpetuating research for the establishment of novel ALK inhibitors in order to ameliorate the consequences of NSCLC. Intriguingly, a few plant-based drugs have paved their way to phase II clinical trial, inspired by which, the present study essayed to unearth novel ALK inhibitors from the NPACT database which comprises 1574 plant-derived compounds that exhibit anti-cancerous activity, using 3D QSAR model (AAADD.1882). Furthermore, multiple docking algorithms (PL-PatchSurfer2 and Glide) were employed to eliminate the false positive prediction. In essence, the strength of the association between the IC50 values and docking score was measured by Pearson’s correlation coefficient (r). Altogether, our anatomisation yielded three hits, namely; obovaten (NPACT00821), pinoresinol (NPCT00008) and (3S)-3′,7-dihydroxy-2′,4′,5′,8-tetramethoxyisoflavan (NPACT00018) with higher docking scores, predicted anti-cancer and pharmaceutically appurtenant properties with greater CNS involvement. Ultimately, molecular dynamic (MD) simulation highlights the real time evidence for stability of these hit compounds. It is noteworthy to mention that all the hits constitute of particular scaffolds which play a major role in the downregulation of some ALK-positive lung cancer pathways. We speculate that the outcomes of this research are of substantial prominence in the rational designing of novel and efficacious ALK inhibitors.

Keypoints

  1. 1.

    A total of 1574 plant-derived compounds was explored for their ALK inhibitory activity.

  2. 2.

    Possible mechanistic action of the hits was proposed.

  3. 3.

    Pearson’s correlation coefficient was used to examine the statistical significance of the computational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdelhafez OM, Ali HI, Amin KM, Abdalla MM, Ahmed EY (2015) Design, synthesis and anticancer activity of furochromone and benzofuran derivatives targeting VEGFR-2 tyrosine kinase. RSC Adv 5:25312–25324

    Article  CAS  Google Scholar 

  • Almerico AM, Tutone M, Lauria A (2012) Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors. J Mol Model 18:2885–2895

    Article  CAS  PubMed  Google Scholar 

  • Bayliss R, Choi J, Fennell DA, Fry AM, Richards MW (2016) Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs. Cell Mol Life Sci 73:1209–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergethon K, Shaw AT, Ou SHI, Katayama R, Lovly CM, McDonald NT, Mark EJ (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan BA, Hughes BG (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res 4:36–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chirumbolo S, Bjørklund G, Lysiuk R, Vella A, Lenchyk L, Upyr T (2018) Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int J Mol Sci 19:3568

    Article  CAS  PubMed Central  Google Scholar 

  • Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, Los G (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase & c-met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322

    Article  CAS  PubMed  Google Scholar 

  • Coskun D, Erkisa M, Ulukaya E, Coskun MF, Ari F (2017) Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: synthesis, characterization and anticancer activity. Eur J Med Chem 136:212–222

    Article  CAS  PubMed  Google Scholar 

  • Dash RC, Bhosale SH, Shelke SM, Suryawanshi MR, Kanhed AM, Mahadik KR (2012) Scaffold hopping for identification of novel D2 antagonist based on 3D pharmacophore modelling of illoperidone analogs. Mol Divers 16:367–375

    Article  CAS  PubMed  Google Scholar 

  • Doak BC, Over B, Giordanetto F, Kihlberg J (2014) Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem Biol 21:1115–1142

    Article  CAS  PubMed  Google Scholar 

  • De Falco F, Di Giovanni C, Cerchia C, De Stefano D, Capuozzo A, Irace C, Iuvone T, Santamaria R, Carnuccio R, Lavecchia A (2016) Novel non-peptide small molecules preventing IKKß/NEMO association inhibit NF- κB activation in LPS-stimulated J774 macrophages. Biochem Pharmacol 104:83–94

    Article  CAS  PubMed  Google Scholar 

  • Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671

    Article  CAS  PubMed  Google Scholar 

  • Dubey AP, Pathi N, Viswanath S, Rathore A, Pathak A, Sud R (2017) New insights into anaplastic lymphoma kinase-positive nonsmall cell lung cancer. Indian J Cancer 54:203–208

    Article  CAS  PubMed  Google Scholar 

  • Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, Bei R (2015) In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16:9236–9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, De Vol EB, Ricciardiello L (2007) Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM–p53 cascade in colon cancer cell lines. Carcinogenesis 29:139–146

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Gudipati S, Muttineni R, Mankad AU, Pandya HA, Jasrai YT (2018) Molecular docking based screening of Noggin inhibitors. Bioinformation 14:15–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Hallberg B, Palmer RH (2016) The role of the ALK receptor in cancer biology. Ann Oncol 27:4–15

    Article  Google Scholar 

  • Hardavella G, George R, Sethi T (2016) Lung cancer stem cells—characteristics, phenotype. Transl Lung Cancer Res 5:272–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland DT, Liu J, Lee RB, Lee RE (2016) New agents for the treatment of drug-resistant mycobacterium tuberculosis. Adv Drug Deliv Rev 102:55–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honorio KM, Moda TL, Andricopulo AD (2013) Pharmacokinetic properties and in silico ADME modeling in drug discovery. Med Chem 9:163–176

    Article  CAS  PubMed  Google Scholar 

  • James N, Shanthi V, Ramanathan K (2018) Drug design for ALK-positive NSCLC: An integrated pharmacophore-based 3D QSAR and virtual screening strategy. Appl Biochem Biotechnol 185:289–315

    Article  CAS  PubMed  Google Scholar 

  • Juang SH, Chiang CY, Liang FP, Chan HH, Yang JS, Wang SH, Lin YC, Kuo PC, Shen MR, Thang TD, Nguyet BT, Kuo SC, Wu TS (2016) Mechanistic study of tetrahydrofuran- acetogenins In triggering endoplasmic reticulum stress response-apotoposis in human nasopharyngeal carcinoma. Sci Rep 6:39251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirubakaran P, Muthusamy K, Singh KHD, Nagamani S (2012) Ligand-based pharmacophore modeling; atom-based 3D-QSAR analysis and molecular docking studies of phosphoinositide-dependent kinase-1 inhibitors. Indian J Pharm Sci 74:141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Annu 7:306–317

    Article  CAS  Google Scholar 

  • Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: Principles, applications & recent advances. Curr Top Med Chem 14:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado D, Girardini M, Viveiros M, Pieroni M (2018) Challenging the “drug-likeness” dogma for new drug discovery in tuberculosis. Front Microbiol 9:1367

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangal M, Sagar P, Singh H, Raghava GP, Agarwal SM (2012) NPACT: naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res 41:1124–1129

    Article  CAS  Google Scholar 

  • Meagher KL, Carlson HA (2005) Solvation influences flap collapse in HIV‐1 protease. Proteins 58:119–125

    Article  CAS  PubMed  Google Scholar 

  • Navada S, Lai P, Schwartz AG, Kalemkerian GP (2006) Temporal trends in small cell lung cancer: analysis of the national surveillance, epidemiology, and end-results (SEER) database. J Clin Oncol 24:7082–7082

    Google Scholar 

  • Paulsen JL, Anderson AC (2009) Scoring ensembles of docked protein–ligand interactions for virtual lead optimization. J Chem Inf Model 49:2813–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters S, Kerr KM (2018) Stahel RPD-1 blockade in advanced NSCLC: a focus on pembrolizumab. Cancer Treat Rev 62:39–49

    Article  CAS  PubMed  Google Scholar 

  • Płużański A, Piórek A, Krzakowski M (2012) Crizotinib in the treatment of non-small-cell lung carcinoma. Contemp Oncol 16:1195–1201

    Google Scholar 

  • Preethi B, Shanthi V, Ramanathan K (2015) Investigation of nalidixic acid resistance mechanism in salmonella enterica using molecular simulation techniques. Appl Biochem Biotechnol 177:528–540

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R (2013) Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68:68–94

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R (2016) Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol Res 103:26–48

    Article  CAS  PubMed  Google Scholar 

  • Salomé C, Ribeiro N, Chavagnan T, Thuaud F, Serova M, de Gramont A, Faivre S, Raymond E, Désaubry L (2014) Benzofuran derivatives as anticancer inhibitors of mTOR signaling. Eur J Med Chem 81:181–191

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Rodig SJ, Chirieac LR, Jänne PA (2010) The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 46:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pKa prediction & protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691

    Article  CAS  PubMed  Google Scholar 

  • Shin WH, Christoffer CW, Wang J, Kihara D (2016) PL-PatchSurfer2: improved local surface matching-based virtual screening method that is tolerant to target and ligand structure variation. J Chem Inf Model 56:1676–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin WH, Kihara D (2018) Virtual ligand screening using PL-PatchSurfer2, a molecular surface-based protein–ligand docking method. Methods Mol Biol 1762:105–121

    Article  CAS  PubMed  Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Bando M (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  • Soda M, Takada S, Takeuchi K, Choi YL, Enomoto M, Ueno T, Sugiyama Y (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA 105:19893–19897

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan HK, Moad AI, Tan ML (2014) The mTOR signalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev 15:6463–6475

    Article  PubMed  Google Scholar 

  • Tsai IL, Hsieh CF, Duh CY (1998) Additional cytotoxic neolignans from Persea obovatifolia. Phytochemistry 48:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Vernersson E, Khoo NK, Henriksson ML, Roos G, Palmer RH, Hallberg B (2006) Characterization of the expression of the ALK receptor tyrosine kinase in mice. Gene Expr Patterns 6:448–461

    Article  CAS  PubMed  Google Scholar 

  • Zappa C, Mousa SA (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 5:288–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wang Y, Lu A, Zhang G (2016) Systems pharmacology in small molecular drug discovery. Int J Mol Sci 17:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Nambu MD (2007) An orally available small-molecule inhibitor of c-met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 7:4408–4417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (KR, SM and VS) thank the management of VIT, Vellore for providing the facilities to carry out this work. KR thanks ICMR for their support by the International Fellowship for Young Biomedical Scientists Award.

Funding

The authors (KR & VS) are grateful to Department of Science and Technology-Science and Engineering Research Board (DST-SERB) for funding the research project (File No. EMR/2016/001675). DK acknowledges supports from the National Institute of Health (R01GM123055), the National Science Foundation (DMS1614777, CMMI1825941) and the Purdue Institute of Drug Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan K..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K., R., Maiti, S., V., S. et al. Implementation of pharmacophore-based 3D QSAR model and scaffold analysis in order to excavate pristine ALK inhibitors. Med Chem Res 28, 1726–1739 (2019). https://doi.org/10.1007/s00044-019-02410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02410-9

Keywords

Navigation