Skip to main content

Advertisement

Log in

Flavonoids as lead compounds modulating the enzyme targets in Alzheimer’s disease

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain amongst the elderly. The various enzyme targets have been identified including cholinesterase (acetylcholinesterase and butyrylcholinesterase), beta secretase, glycogen synthase kinase-3β and NADPH that play an important role in the pathogenesis of AD. Flavonoids are the phytochemicals with wide range of potential therapeutic activities including AD. Naturally occurring flavonoids have been shown to produce the beneficial effects in experimental models of AD through multiple mechanisms. Accordingly, the naturally occurring flavonoids scaffolds have been modified or new flavonoids analogues have been synthesized to obtain effective drugs for AD management. The present review describes the enzyme targets-(of AD) modulating naturally/synthesized flavonoids which may be potentially useful in the management of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn J, Um M, Choi W, Kim S, Ha T (2006) Protective effects of Glycyrrhiza uralensis Fisch. on the cognitive deficits caused by beta-amyloid peptide 25–35 in young mice. Biogerontology 7:239–247

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Singh B (2012) Synthesis and evaluation of novel 4-[(3H,3aH,6aH)-3-phenyl)-4,6-dioxo-2-phenyldihydro-2H-pyrrolo[3,4-d]isoxazol-5(3H,6H,6aH)-yl]benzoic acid derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Bioorg Med Chem 20:521–530

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180

    Article  PubMed  CAS  Google Scholar 

  • Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  PubMed  CAS  Google Scholar 

  • Beher D, Graham SL (2005) Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opin Investig Drugs 14:1385–1409

    Article  PubMed  CAS  Google Scholar 

  • Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller AJ, Gupta S, Parrino TE, Knight AE, Ebenezer PJ, Weidner AM, Levine H, Keller J, Markesbery WR (2010) NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal 12:1371–1382

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Bower KA, Xu M, Ding M, Shi X, Ke ZJ, Luo J (2009) Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: role of glycogen synthase kinase 3 Beta. Neurotox Res 15:321–331

    Article  PubMed  CAS  Google Scholar 

  • Cho JK, Ryu YB, Curtis-Long MJ, Kim JY, Kim D, Lee S, Lee WS, Park KH (2011) Inhibition and structural reliability of prenylated flavones from the stem bark of Morus lhou on β-secretase (BACE-1). Bioorg Med Chem Lett 21:2945–2948

    Article  PubMed  CAS  Google Scholar 

  • Choi SH, Kim YW, Kim SG (2010) AMPK-mediated GSK3beta inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol 79:1352–1362

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40:10447–10457

    Article  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V, Tan J, Cao C, Shytle RD, Bradshaw PC (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26:507–521

    PubMed  CAS  Google Scholar 

  • Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8:126–132

    Article  PubMed  CAS  Google Scholar 

  • Fath T, Eidenmüller J, Brandt R (2002) Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer’s disease. J Neurosci 22:9733–9741

    PubMed  CAS  Google Scholar 

  • Geula C, Darvesh S (2004) Butyrylcholinesterase, cholinergic neurotransmission and the pathology of Alzheimer’s disease. Drugs Today (Barc) 40:711–721

    Article  CAS  Google Scholar 

  • Gómez-Guzmán M, Jiménez R, Sánchez M, Zarzuelo MJ, Galindo P, Quintela AM, López-Sepúlveda R, Romero M, Tamargo J, Vargas F, Pérez-Vizcaíno F, Duarte J (2012) Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 52:70–79

    Article  PubMed  Google Scholar 

  • Guo T, Hobbs DW (2006) Development of BACE1 inhibitors for Alzheimer’s disease. Curr Med Chem 13:1811–1829

    Article  PubMed  CAS  Google Scholar 

  • Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58–62

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hattori M, Sugino E, Minoura K, In Y, Sumida M, Taniguchi T, Tomoo K, Ishida T (2008) Different inhibitory response of cyanidin and methylene blue for filament formation of tau microtubule binding domain. Biochem Biophys Res Commun 374:158–163

    Article  PubMed  CAS  Google Scholar 

  • He Y, Cui J, Lee JC, Ding S, Chalimoniuk M, Simonyi A, Sun AY, Gu Z, Weisman GA, Wood WG, Sun GY (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-β impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro 3:e00050

    Article  PubMed  Google Scholar 

  • Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  PubMed  CAS  Google Scholar 

  • Hsieh HM, Wu WM, Hu ML (2009) Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with d-galactose. Food Chem Toxicol 47:625–632

    Article  PubMed  CAS  Google Scholar 

  • Hwang EM, Ryu YB, Kim HY, Kim DG, Hong SG, Lee JH, Curtis-Long MJ, Jeong SH, Park JY, Park KH (2008) BACE1 inhibitory effects of lavandulyl flavanones from Sophora flavescens. Bioorg Med Chem 16:6669–6674

    Article  PubMed  CAS  Google Scholar 

  • Jeon SY, Bae K, Seong YH, Song KS (2003) Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 13:3905–3908

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Rupasinghe SG, Stefani F, Schuler MA, Gonzalez de Mejia E (2011) Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food 14:325–333

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Park M (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12:2130–2139

    Article  PubMed  CAS  Google Scholar 

  • Katalinić M, Rusak G, Domaćinović Barović J, Sinko G, Jelić D, Antolović R, Kovarik Z (2010) Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur J Med Chem 45:186–192

    Article  PubMed  Google Scholar 

  • Khan MT, Orhan I, Senol FS, Kartal M, Sener B, Dvorská M, Smejkal K, Slapetová T (2009) Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem Biol Interact 181:383–389

    Article  PubMed  CAS  Google Scholar 

  • Khong FL, Zhang Y, Edgley AJ, Qi W, Connelly KA, Woodman OL, Krum H, Kelly DJ (2011) 3′,4′-Dihydroxyflavonol antioxidant attenuates diastolic dysfunction and cardiac remodeling in streptozotocin-induced diabetic m(Ren2)27 rats. PLoS One 6:e22777

    Article  PubMed  CAS  Google Scholar 

  • Kim YW, Hackett JC, Brueggemeier RW (2004) Synthesis and aromatase inhibitory activity of novel pyridine-containing isoflavones. J Med Chem 47:4032–4040

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, Lee SE (2005) Effects of naturally occurring compounds on fibril formation and oxidative stress of beta-amyloid. J Agric Food Chem 53:8537–8541

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, Kim CJ, Kim HK, Peterson S, Shin DH (2010) Protective effects of kaempferol (3,4′,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem 74:397–401

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Lee WS, Kim YS, Curtis-Long MJ, Lee BW, Ryu YB, Park KH (2011) Isolation of cholinesterase-inhibiting flavonoids from Morus lhou. J Agric Food Chem 59:4589–4596

    Article  PubMed  CAS  Google Scholar 

  • Koh SH, Kim SH, Kwon H, Park Y, Kim KS, Song CW, Kim J, Kim MH, Yu HJ, Henkel JS, Jung HK (2003) Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res Mol Brain Res 118:72–81

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Meng F, Zhang L, Liu A, Qin H, Lan X, Li L, Du G (2011) Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 16:2084–2096

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Yang Z, Li C, Zhu Z, Shen X, Hu L (2011) Design, synthesis and SAR study of hydroxychalcone inhibitors of human β-secretase (BACE1). J Enzyme Inhib Med Chem 26:643–648

    Article  PubMed  CAS  Google Scholar 

  • McGeer EG, McGeer PL (2003) Clinically tested drugs for Alzheimer’s disease. Expert Opin Investig Drugs 12:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  • Nie J, Luo Y, Huang XN, Lu YF, Sun AS, Gong QH, Shi JS (2008) Protective effect of icariin on learning and memory dysfunction induced by amyloid b-protein fragment 25–35. Chin J Pharmacol Toxicol 22:31–37

    CAS  Google Scholar 

  • Nie J, Luo Y, Huang XN, Gong QH, Wu Q, Shi JS (2010) Icariin inhibits beta amyloid peptide segment 25–35 induced expression of b-secretase in rat hippocampus. Eur J Pharmacol 626:213–218

    Article  PubMed  CAS  Google Scholar 

  • Osborn GG, Saunders AV (2010) Current treatments for patients with Alzheimer disease. J Am Osteopath Assoc 110(9 Suppl 8):S16–S26

    PubMed  Google Scholar 

  • Pera M, Martínez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A, Clos MV (2009) Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 40:217–224

    Article  PubMed  CAS  Google Scholar 

  • Phromnoi K, Reuter S, Sung B, Limtrakul P, Aggarwal BB (2010) A dihydroxy-pentamethoxyflavone from Gardenia obtusifolia suppresses proliferation and promotes apoptosis of tumor cells through modulation of multiple cell signaling pathways. Anticancer Res 30:3599–3610

    PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Douglas Shytle R, Bai Y, Tian J, Hou H, Mori T, Zeng J, Obregon D, Town T, Tan J (2009) Flavonoid-mediated presenilin-1 phosphorylation reduces Alzheimer’s disease beta-amyloid production. J Cell Mol Med 13:574–588

    Article  PubMed  CAS  Google Scholar 

  • Richetti SK, Blank M, Capiotti KM, Piato AL, Bogo MR, Vianna MR, Bonan CD (2011) Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 217:10–15

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Miki K, Kinoshita K, Koyama K, Juliawaty LD, Achmad SA, Hakim EH, Kaneda M, Takahashi K (2010) Beta-secretase (BACE-1) inhibitory effect of biflavonoids. Bioorg Med Chem Lett 20:4558–4560

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Zhang J, Sheng R, Dong X, He Q, Yang B, Hu Y (2009) Synthesis and biological evaluation of novel flavonoid derivatives as dual binding acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 24:372–380

    Article  PubMed  CAS  Google Scholar 

  • Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y (2009) Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors. Bioorg Med Chem 17:6692–6698

    Article  PubMed  CAS  Google Scholar 

  • Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H (2008) Flavonols and flavones as BACE-1 inhibitors: structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochim Biophys Acta 1780:819–825

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273:5–9

    Article  PubMed  CAS  Google Scholar 

  • Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11:2481–2504

    Article  PubMed  CAS  Google Scholar 

  • Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  • Steffen Y, Gruber C, Schewe T, Sies H (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 469:209–219

    Article  PubMed  CAS  Google Scholar 

  • Tarozzi A, Merlicco A, Morroni F, Franco F, Cantelli-Forti G, Teti G, Falconi M, Hrelia P (2008) Cyanidin 3-O-glucopyranoside protects and rescues SH-SY5Y cells against amyloid-beta peptide induced toxicity. Neuroreport 19:1483–1486

    Article  PubMed  CAS  Google Scholar 

  • Thamilselvan V, Menon M, Thamilselvan S (2011) Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 β/β-catenin pathway. Int J Cancer 129:2916–2927

    Article  PubMed  CAS  Google Scholar 

  • Wang CN, Chi CW, Lin YL, Chen CF, Shiao YJ (2001) The neuroprotective effects of phytoestrogens on amyloid beta protein-induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons. J Biol Chem 276:5287–5295

    Article  PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402:533–537

    Article  PubMed  CAS  Google Scholar 

  • Yang LX, Huang KX, Li HB, Gong JX, Wang F, Feng YB, Tao QF, Wu YH, Li XK, Wu XM, Zeng S, Spencer S, Zhao Y, Qu J (2009) Design, synthesis, and examination of neuron protective properties of alkenylated and amidated dehydro-silybin derivatives. J Med Chem 52:7732–7752

    Article  PubMed  CAS  Google Scholar 

  • Zeng KW, Ko H, Yang HO, Wang XM (2010) Icariin attenuates β-amyloid-induced neurotoxicity by inhibition of tau protein hyperphosphorylation in PC12 cells. Neuropharmacology 59:542–550

    Article  PubMed  CAS  Google Scholar 

  • Zhu JT, Choi RC, Chu GK, Cheung AW, Gao QT, Li J, Jiang ZY, Dong TT, Tsim KW (2007) Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: a comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. J Agric Food Chem 55:2438–2445

    Article  PubMed  CAS  Google Scholar 

  • Zhu JT, Choi RC, Xie HQ, Zheng KY, Guo AJ, Bi CW, Lau DT, Li J, Dong TT, Lau BW, Chen JJ, Tsim KW (2009) Hibifolin, a flavonol glycoside, prevents beta-amyloid-induced neurotoxicity in cultured cortical neurons. Neurosci Lett 461:172–176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors duly acknowledge the financial support from UGC New Delhi, India, through the research scheme no. 39-716/2010 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baldev Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand, P., Singh, B. Flavonoids as lead compounds modulating the enzyme targets in Alzheimer’s disease. Med Chem Res 22, 3061–3075 (2013). https://doi.org/10.1007/s00044-012-0353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0353-y

Keywords

Navigation