Skip to main content
Log in

Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones (117) was synthesized and tested in vitro for its antimicrobial and anticancer potentials. The biological screening results indicated that compounds having m-chloro substituent on benzaldehyde portion showed antimicrobial potential, whereas compounds having chloro, methoxy, and hydroxyl groups showed anticancer potential. The quantitative structure activity relationship (QSAR) studies indicated the importance of topological parameter, valence first order molecular connectivity index in describing antifungal activity. The developed QSAR models, however, were statistically insignificant with reference to anticancer activity of the synthesized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Jalil RJ, Momani EQE, Hamad M, Voelter W, Mubarak MS, Smith BH, Peters DG (2010) Synthesis, antitumor activity and electrochemical behavior of some piperazinyl amidrazones. Monatsh Chem 141:251–258

    Article  CAS  Google Scholar 

  • Bajaj S, Sambi SS, Madan AK (2005) Prediction of anti-inflammatory activity of N-arylanthranilic acids: computational approach using refined Zagreb Indices. Croat Chem Acta 78(2):165–174

    CAS  Google Scholar 

  • Balaban AT (1982) Highly discriminating distance based topological indices. Chem Phys Lett 89:399–404

    Article  CAS  Google Scholar 

  • Bashkatova NV, Korotkova EI, Karbainov YA, Yagovkin AY, Bakibaev AA (2005) Electrochemical, quantum-chemical and antioxidant properties of antipyrine and its derivatives. J Pharm Biomed Anal 37:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Bayrak H, Demirbas A, Demirbas N, Karaoglu SA (2010) Cyclization of some carbothioamide derivatives containing antipyrine and triazolemoieties and investigation of their antimicrobial activities. Eur J Med Chem 45:4726–4732

    Article  PubMed  CAS  Google Scholar 

  • Bondock S, Rabie R, Etman HA, Fadda AA (2008) Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur J Med Chem 43:2122–2129

    Article  PubMed  CAS  Google Scholar 

  • Cappucino JG, Sherman N (1999) Microbiology—a laboratory manual. Addison Wesley, California, p 263

    Google Scholar 

  • Cruz-Monteagudo M, Gonzalez-Diaz H, Aguero-Chapin G, Santana L, Borges F, Dominguez ER, Podda G, Uriarte E (2007) Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J Comput Chem 28(11):1909–1923

    Article  PubMed  CAS  Google Scholar 

  • Emami S, Falahati M, Banifafemi A, Shafiee A (2004) Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers. Bioorgan Med Chem 12:5881–5889

    Article  CAS  Google Scholar 

  • Emami S, Foroumadi A, Falahati M, Lotfali E, Rajabalian S, Ebrahimi FS, Shafiee A (2008) 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg Med Chem Lett 18:141–146

    Article  PubMed  CAS  Google Scholar 

  • Furusjo E, Svenson A, Rahmberg M, Andersson M (2006) The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere 63:99–108

    Article  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q 2! J Mol Graphics Model 20:269–276

    Article  CAS  Google Scholar 

  • Gonzalez-Diaz H, Prado-Prado FJ (2008) Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. J Comput Chem 29(4):656–667

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007) Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr Top Med Chem 7(10):1015–1029

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Gonzalez-Diaz Y, Santana L, Ubeira FM, Uriarte E (2008) Networks and connectivity indices. Proteomics 8(4):750–778

    Article  PubMed  CAS  Google Scholar 

  • Gupta SP, Kumar AN, Nagazappa AN, Kumar D, Kumaran S (2003) A quantitative structure-activity relationship study on a novel class of calcium-entry blockers: 1-[(4-(aminoalkoxy)phenyl)sulphonyl]indolizines. J Med Chem 38:867–873

    Article  CAS  Google Scholar 

  • Guzeldemirci NU, Ilhan E, Kucukbasmaci O, Satana D (2010) Synthesis and antimicrobial evaluation of new 3-alkyl/aryl-2-[((α, α-diphenyl-α-hydroxy)acetyl)hydrazono]-5-methyl-4-thiazolidinones. Arch Pharm Res 33:17–24

    Article  PubMed  CAS  Google Scholar 

  • Hansch C, Fujita T (1964) p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  • Hyperchem 6.0 (1993) Hypercube, Inc., Florida

  • Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011a) Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of isonicotinic acid-1-(substituted phenyl)-ethylidene/cycloheptylidene hydrazides. Med Chem Res. doi:10.1007/s00044-011-9705-2

  • Judge V, Narasimhan B, Ahuja M, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011b) Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity, and QSAR studies. Med Chem Res. doi:10.1007/s00044-011-9662-9

  • Kumar A, Narasimhan B, Kumar D (2007) Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorgan Med Chem 15:4113–4124

    Article  CAS  Google Scholar 

  • Kumar D, Judge V, Narang R, Sangwan S, Clercq ED, Balzarini J, Narasimhan B (2010a) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:2806–2816

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Narasimhan B, Yogeswari P, Sriram D (2010b) Synthesis and antitubercular activities of substituted benzoic acid N’-(substituted benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides. Eur J Med Chem 45:6085–6089

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Narang R, Judge V, Kumar D, Narasimhan B (2011) Antimicrobial evaluation of 4-methylsulfanyl benzylidene/3-hydroxy benzylidene hydrazides and QSAR studies. Med Chem Res. doi:10.1007/s00044-010-9543-7

  • Lather V, Madan AK (2005) Topological models for the prediction of anti-HIV activity of dihydro (alkylthio) (naphthylmethyl) oxopyrimidines. Bioorgan Med Chem 13:1599–1604

    Article  CAS  Google Scholar 

  • Mahle F, Guimaraes TR, Meira AV, Correa R, Cruz RCB, Cruz AB, Nunes RJ, Cechinel-Filho V, Campos-Buzzi FD (2010) Synthesis and biological evaluation of N-antipyrine-4-substituted amino-3-chloromaleimide derivatives. Eur J Med Chem 45:4761–4768

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  • Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011a) Synthesis, antimycobacterial, antiviral, antimicrobial activities, and QSAR studies of nicotinic acid benzylidene hydrazide derivatives. Med Chem Res. doi:10.1007/s00044-011-9664-7

  • Narang R, Narasimhan B, Sharma S, Sriram D, Yogeeswari P, Clercq ED, Pannecouque C, Balzarini J (2011b) Nicotinic acid benzylidene/phenyl-ethylidene hydrazides: synthesis and antimicrobial evaluation and QSAR studies. Lett Drug Des Discov 8:733–749

    Article  CAS  Google Scholar 

  • Narasimhan B, Judge V, Narang R, Ohlan S, Ohlan R (2007) Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives. Bioorg Med Chem Lett 17:5836–5845

    Article  PubMed  CAS  Google Scholar 

  • Pharmacopoeia of India (2007) Controller of Publications, Ministry of Health Department, Government of India, New Delhi, vol. I: 37

  • Rodriguez-Arguelles MC, Lopez-Silva EC, Sanmartin J, Pelagatti P, Zani F (2005) Copper complexes of imidazole-2-, pyrrole-2- and indol-3-carbaldehyde thiosemicarbazones: inhibitory activity against fungi and bacteria. J Inorg Biochem 99:2231–2239

    Article  PubMed  Google Scholar 

  • Rostom SAF, El-Ashmawy IM, Razik HAAE, Badr MH, Ashour HMA (2009) Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents. Bioorgan Med Chem 17:882–895

    Article  CAS  Google Scholar 

  • Rosu T, Negoiu M, Pasculescu S, Pahontu E, Poirier D, Gulea A (2010) Metal-based biologically active agents: synthesis, characterization, antibacterial and antileukemia activity evaluation of Cu(II), V(IV) and Ni(II) complexes with antipyrine-derived compounds. Eur J Med Chem 45:774–789

    Article  PubMed  CAS  Google Scholar 

  • Roy PP, Paul S, Mitra I, Roy K (2009) Two novel parameters for validation of predictive QSAR models. Molecules 14:1660–1701

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov AE, Makhmudov RR, Kovylyaeva NV, Prosyanik NI, Bobrov AV, Zalesov VV (2002) Synthesis, anti-inflammatory and analgesic activity of 4-antipyrine derivatives. Pharm Chem J 36:31–35

    Article  Google Scholar 

  • Rusinov VL, Kovalev IS, Kozhevnikov DN, Ustinova MM, Chupakhin ON, Pokrovskii AG, Ilicheva TN, Belanov EF, Bormotov NI, Serova OA, Volkov ON (2005) Synthesis and antiviral activity of 2-amino-3-ethoxycarbonylpyrazine derivatives. Pharm Chem J 39(12):12–16

    Article  Google Scholar 

  • Sabet R, Mohammadpour M, Sadeghi A, Fassihi A (2010) QSAR study of isatin analogues as in vitro anti-cancer agents. Eur J Med Chem 45:1113–1118

    Article  PubMed  CAS  Google Scholar 

  • Santos PMP, Antunes AMM, Noronha J, Fernandes E, Vieira AJSC (2010) Scavenging activity of aminoantipyrines against hydroxyl radical. Eur J Med Chem 45:2258–2264

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Rane N, Gurram VK (2004) Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 14:4185–4190

    Article  PubMed  CAS  Google Scholar 

  • Shchegolkov EV, Khudina O, Anikina LV, Burgart YV, Saloutin VI (2006) Synthesis, analgesic and antipyretic activity of 2-(antipyrin-4-yl)hydrazones of 1,2,3-triketones and their derivatives. Pharm Chem J 40:27–29

    Google Scholar 

  • SPSS for Windows (1999) version 10.05, SPSS Inc., Bangalore, India

  • TSAR 3D Version 3.3 (2000) Oxford Molecular Limited

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Narasimhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigroha, S., Narasimhan, B., Kumar, P. et al. Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Med Chem Res 21, 3863–3875 (2012). https://doi.org/10.1007/s00044-011-9906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9906-8

Keywords

Navigation