Skip to main content
Log in

Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: a 3D-QSAR study on their cytotoxicity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

We report a library consisting of some novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest as well as their synthesis and analysis. The important steps in the synthetic part were found to be Hantzsch and Biginelli multicomponent reactions. The synthesized compounds were screened for their in vitro antibacterial activity against two gram-positive bacteria: Staphylococcus aureus and Bacillus subtilis. The title compounds did not exhibit potential antibacterial activity. Furthermore, compounds were subjected to in vitro cytotoxicity against Vero cells. Compounds exhibited weak, moderate, or high cytotoxicity. Compounds 4a, 4b, 4c, 4f, 4g, 4h, 4i, 7i, 7l, 7m, and 7r exhibited potential cytotoxicity. CoMFA study has resulted in the identification of structural features contributing toward their cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreas H, Gunter H, Ute B, Detlef R (1999) Solid-state photodimerization of 4-aryl-1,4-dihydropyridines studied by 13C CPMAS NMR spectroscopy. Solid State NMR 13:231–243. doi:10.1016/S0926-2040(98)00090-3

    Article  Google Scholar 

  • Aron ZD, Overman LE (2004) The tethered Biginelli condensation in natural product synthesis. Chem Commun 3:253–265. doi:10.1039/b309910e

    Article  Google Scholar 

  • Biginelli P (1893) Aldehyde–urea derivatives of aceto- and oxaloacetic acids. Gazz Chim Ital 23:360

    Google Scholar 

  • Bruce TC, Bencovic SJ (1966) Bioorganic mechanism, vol II. W. A. Benjamin, New York, 301 pp

    Google Scholar 

  • Clark M, Cramer RD III, Van Opdenbosch N (1989) Validation of the general-purpose Tripos 5.2 force-field. J Comput Chem 10:982–1012. doi:10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  • Clark M, Cramer RD III, Jones DM, Patterson DE, Simeroth PE (1990) Comparative molecular field analysis (CoMFA): toward its use with 3D structural databases. Tetrahedron Comput Methodol 3:47–59. doi:10.1016/0898-5529(90)90120-W

    Article  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988a) Comparative molecular field analysis (CoMFA): effect of shape on binding of steroids to carried protein. J Am Chem Soc 110:5959–5967. doi:10.1021/ja00226a005

    Article  CAS  Google Scholar 

  • Cramer RD III, Bunce JD, Patterson DE, Frank LE (1988b) Cross-validation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25. doi:10.1002/qsar.19880070105

    Article  Google Scholar 

  • Dallinger D, Stadler A, Kappe CO (2004) Solid and solution phase synthesis of bioactive dihydropyrimidines. Pure Appl Chem 76:1017–1024. doi:10.1351/pac200476051017

    Article  CAS  Google Scholar 

  • Desai B, Sureja D, Naliapara Y, Shah A, Saxena AK (2001) Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3,5-bis-n-(substituted phenyl) carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bioorg Med Chem 9:1993–1998. doi:10.1016/S0968-0896(01)00141-9

    Article  CAS  PubMed  Google Scholar 

  • Eisner U, Kuthan J (1972) The chemistry of dihydropyridines. Chem Rev 72:1–42. doi:10.1021/cr60275a001

    Article  CAS  Google Scholar 

  • Eynde JJ V, Watte O (2003) Insoluble versus soluble polymer-assisted synthesis: a first approach for the preparation of a Biginelli compound. Arkivoc 4:93–101

    Google Scholar 

  • Frankel S, Reitman S, Sonnenwirth AC (1970) Gradwol’s clinical laboratory methods and diagnosis, 7th edn. Mosby, Germany, 1406 pp

    Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital-electronegativity: a rapid access to atomic charges. Tetrahedron 36:3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  • Hantzsch A (1882) Uber die synthese pyridinartiger verbindungen aus acetessigather und aldehydammoniak Justus Liebigs. Ann Chim 215:1–15

    Google Scholar 

  • Hattori K, Kohchi Y, Oikawa N, Suda H, Ura M, Ishikawa T, Miwa M, Endoh M, Eda H, Tanimura H, Kawashima A, Horii I, Ishitsuka H, Shimma N (2003) Design and synthesis of the tumor-activated prodrug of dihydropyrimidine dehydrogenase (DPD) inhibitor, RO0094889 for combination therapy with capecitabine. Bioorg Med Chem Lett 13:867–872. doi:10.1016/S0960-894X(02)01082-X

    Article  CAS  PubMed  Google Scholar 

  • Heys L, Moore CG, Murphy PJ (2000) The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis. Chem Soc Rev 29:57–67. doi:10.1039/a903712h

    Article  CAS  Google Scholar 

  • Hooper DC, Wolfson JS, McHugh GL, Winters MB, Swartz MN (1982) Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob Agents Chemother 22:662–671

    CAS  PubMed  Google Scholar 

  • Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930. doi:10.1021/cr020033s

    Article  CAS  PubMed  Google Scholar 

  • Jones G (1984) Comprehensive heterocyclic chemistry. Pergamon, Oxford, 482 pp

    Google Scholar 

  • Kappe CO (1993) 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 49:6937–6963. doi:10.1016/S0040-4020(01)87971-0

    Article  CAS  Google Scholar 

  • Kappe CO (2000a) Biologically active dihydropyrimidines of the Biginelli-type a literature survey. Eur J Med Chem 35:1043–1052. doi:10.1016/S0223-5234(00)01189-2

    Article  CAS  PubMed  Google Scholar 

  • Kappe CO (2000b) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res 33:879–888. doi:10.1021/ar000048h

    Article  CAS  PubMed  Google Scholar 

  • Kappe CO (2003) The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb Sci 22:630–645. doi:10.1002/qsar.200320001

    Article  CAS  Google Scholar 

  • Kappe CO, Stadler A (2004) The Biginelli dihydropyrimidine synthesis in organic reaction. Wiley, New York, pp 1–116

    Google Scholar 

  • Kawase M, Shah A, Gaveriya H, Motohashi N, Sakagami H, Varga A, Molnar J (2002) 3,5-Dibenzoyl-1,4-dihydropyridines: synthesis and MDR reversal in tumor cells. Bioorg Med Chem 10(4):1051. doi:10.1016/S0968-0896(01)00363-7

    Article  CAS  PubMed  Google Scholar 

  • Kubinyi H, Wolff ME (1995) Burger’s medicinal chemistry: principles and practice, 5th edn. Wiley, New York, 498 pp

    Google Scholar 

  • Loev B, Ehrreich SJ, Tedeschi RE (1972) Dihydropyridines with potent hypotensive activity prepared by the Hantzsch reaction. J Pharm Pharmacol 24:917–1008

    CAS  PubMed  Google Scholar 

  • Loev B, Goodman MM, Snader KM, Tedeschi R, Macko E (1974) Hantzsch-type dihydropyridine hypotensive agents. J Med Chem 17:953–965. doi:10.1021/jm00255a010

    Article  Google Scholar 

  • Mager PP, Coburn RA, Solo AJ, Triggle DJ, Rothe H (1992) QSAR, diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium antagonists: a difficult road ahead. Drug Des Discov 8:273–289

    CAS  PubMed  Google Scholar 

  • Meyer H, Bossert F, Wehinger E, Stoepel K, Vater W (1981) Synthesis and comparative pharmacological studies of 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl) pyridine-3,5-dicarbonsäuereestern with non-identical ester functions. Arzneim Forsch 31:407–409

    CAS  Google Scholar 

  • Moldeus P, Hogberg J, Orrhenius S, Fleischer S, Parker L (1978) Methods in enzymology. Academic Press, New York, pp 60–71

    Google Scholar 

  • Philip S, Rista S, Dominic S, Anne M, James M (1990) New colorimetric cytotoxicity assay for anticancer drug screening. J Natl Cancer Inst 82(32):1107–1112

    Google Scholar 

  • Prashantha Kumar BR, Yuvaraj S, Srivastava A, Chaturvedi V, Manju YK, Suresh B, Nanjan MJ (2008) CoMFA study, syntheses, antitubercular and anticancer activity of some novel 1,4-dihydropyridines. Lett Drug Des Discov 5:7–14. doi:10.2174/157018008783406688

    Article  Google Scholar 

  • Shanumugam R, Annie G, Perumal PT (2003) Synthesis of novel 3, 4-dihydropyrimidinones on water soluble solid support catalyzed by indium triflate. J Heterocycl Chem 40:879–884

    Article  Google Scholar 

  • Snider BB, Shi Z (1993) Biomimetic syntheses of (A)-crambines A, B, C1, and C2. Revision of the structures of crambines B and C1. J Org Chem 58:3828–3839. doi:10.1021/jo00067a014

    Article  CAS  Google Scholar 

  • Stout DM, Meyers AI (1982) Recent advances in the chemistry of dihydropyridines. Chem Rev 82:223–243. doi:10.1021/cr00048a004

    Article  CAS  Google Scholar 

  • Tsuji T, Sawai T, Yamashita H, Takeshita H, Nakagoe T, Hidaka S, Nanashima A, Yamaguchi H, Yasutake H, Nagayasu T, Tagawa Y (2004) Tumor dihydropyrimidine dehydrogenase in stage II and III colorectal cancer: low level expression is a beneficial marker in oral-adjuvant chemotherapy, but is also a predictor for poor prognosis in patients treated with curative surgery alone. Cancer Lett 204:97–104. doi:10.1016/j.canlet.2003.09.030

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Prashantha Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prashantha Kumar, B.R., Masih, P., Karthikeyan, E. et al. Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: a 3D-QSAR study on their cytotoxicity. Med Chem Res 19, 344–363 (2010). https://doi.org/10.1007/s00044-009-9195-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-009-9195-7

Keywords

Navigation