Skip to main content
Log in

Paley–Wiener Theorems on the Siegel Upper Half-Space

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we study spaces of holomorphic functions on the Siegel upper half-space \({\mathcal U}\) and prove Paley–Wiener type theorems for such spaces. The boundary of \({\mathcal U}\) can be identified with the Heisenberg group \({\mathbb H}_n\). Using the group Fourier transform on \({\mathbb H}_n\), Ogden and Vagi (Adv Math 33(1):31–92, 1979) proved a Paley–Wiener theorem for the Hardy space \(H^2({\mathcal U})\). We consider a scale of Hilbert spaces on \({\mathcal U}\) that includes the Hardy space, the weighted Bergman spaces, the weighted Dirichlet spaces, and in particular the Drury–Arveson space, and the Dirichlet space \({\mathcal D}\). For each of these spaces, we prove a Paley–Wiener theorem, some structure theorems, and provide some applications. In particular we prove that the norm of the Dirichlet space modulo constants \(\dot{{\mathcal D}}\) is the unique Hilbert space norm that is invariant under the action of the group of automorphisms of \({\mathcal U}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy, J., Fisher, S.D.: The uniqueness of the Dirichlet space among Möbius-invariant Hilbert spaces. Ill. J. Math. 29(3), 449–462 (1985)

    Article  MATH  Google Scholar 

  2. Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for the Drury–Arveson Hardy space and other Besov–Sobolev spaces on complex balls. Adv. Math. 218(4), 1107–1180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arcozzi, N., Rochberg, R., Sawyer, E.: Two variations on the Drury–Arveson space. In: Hilbert Spaces of Analytic Functions, CRM Proceedings and Lecture Notes, vol. 51, pp. 41–58. American Mathematical Society, Providence (2010)

  4. Arveson, W.: Subalgebras of \(C^{\ast } \)-algebras. II. Acta Math. 128(3–4), 271–308 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beatrous, F., Burbea, J.: Holomorphic Sobolev spaces on the ball. Dissertationes Math. (Rozprawy Mat.), 276:60 (1989)

  6. Békollé, D., Bonami, A., Garrigós, G., Nana, C., Peloso, M. M., Ricci, F.: Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint. IMHOTEP J. Afr. Math. Pures Appl. 5:Exp. I, front matter + ii + 75 (2004)

  7. Costea, Ş., Sawyer, E., Wick, B.D.: The corona theorem for the Drury–Arveson Hardy space and other holomorphic Besov–Sobolev spaces on the unit ball in \(\mathbb{C}^n\). Anal. PDE 4(4), 499–550 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duren, P., Gallardo-Gutiérrez, E.A., Montes-Rodriguez, A.: A Paley–Wiener theorem for Bergman spaces with application to invariant subspaces. Bull. Lond. Math. Soc. 39(3), 459–466 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Drury, S.W.: A generalization of von Neumann’s inequality to the complex ball. Proc. Am. Math. Soc. 68(3), 300–304 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Feldman, M.: Mean oscillation, weighted Bergman spaces, and Besov spaces on the Heisenberg group and atomic decompositions. J. Math. Anal. Appl. 158(2), 376–395 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford Mathematical Monographs. The Clarendon Press, New York (1994)

    MATH  Google Scholar 

  12. Folland, G.B.: Harmonic Analysis in Phase Space. Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  13. Kucik, A.S.: Carleson measures for Hilbert spaces of analytic functions on the complex half-plane. J. Math. Anal. Appl. 445(1), 476–497 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kucik, A.S.: Multipliers of Hilbert spaces of analytic functions on the complex half-plane. Oper. Matrices 11(2), 435–453 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Translation invariant spaces. Acta Math. 101, 163–178 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ogden, R.D., Vági, S.: Harmonic analysis of a nilpotent group and function theory of Siegel domains of type \({\rm II}\). Adv. Math. 33(1), 31–92 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paley, R.E.A.C., Wiener, N.: Fourier Transforms in the Complex Domain, vol. 19. American Mathematical Society, Providence (1987[1934]). Reprint of the 1934 original

  18. Peloso, M.M.: Möbius invariant spaces on the unit ball. Mich. Math. J. 39(3), 509–536 (1992)

    Article  MATH  Google Scholar 

  19. Poltoratski, A.: Toeplitz approach to problems of the uncertainty principle, CBMS Regional Conference Series in Mathematics, vol. 121. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (2015)

  20. Ricci, F.: Harmonic Analysis on the Heisenberg Group. Unpublished notes, Cortona, pp. ii+67 (1992)

  21. Ricci, F., Taibleson, M.: Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10(1), 1–54 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Richter, S., Sunkes, J.: Hankel operators, invariant subspaces, and cyclic vectors in the Drury–Arveson space. Proc. Am. Math. Soc. 144(6), 2575–2586 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seip, K.: Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series, vol. 33. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  24. Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993). With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III

  25. Tchoundja, E.: Carleson measures for the generalized Bergman spaces via a \(T(1)\)-type theorem. Ark. Mat. 46(2), 377–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Volberg, A., Wick, B.D.: Bergman-type singular integral operators and the characterization of Carleson measures for Besov–Sobolev spaces and the complex ball. Am. J. Math. 134(4), 949–992 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, vol. 19. Marcel Dekker, Inc., New York (1973)

    Google Scholar 

  28. Zhu, K.: Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of \({ C}^n\). Trans. Am. Math. Soc. 323(2), 823–842 (1991)

    MathSciNet  MATH  Google Scholar 

  29. Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics, vol. 226. Springer, New York (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco M. Peloso.

Additional information

Communicated by Yura Lyubarskii.

Dedicated to Fulvio Ricci, for his teaching, guidance and friendship.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors are partially supported by the 2015 PRIN grant Real and Complex Manifolds: Geometry, Topology and Harmonic Analysis of the Italian Ministry of Education (MIUR). N. Arcozzi is partially supported by the grants INDAM-GNAMPA 2017 “Operatori e disuguaglianze integrali in spazi con simmetrie”. All authors are members of INDAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcozzi, N., Monguzzi, A., Peloso, M.M. et al. Paley–Wiener Theorems on the Siegel Upper Half-Space. J Fourier Anal Appl 25, 1958–1986 (2019). https://doi.org/10.1007/s00041-019-09662-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-019-09662-4

Keywords

Mathematics Subject Classification

Navigation