Skip to main content
Log in

A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce a generalized framework for sampling and reconstruction in separable Hilbert spaces. Specifically, we establish that it is always possible to stably reconstruct a vector in an arbitrary Riesz basis from sufficiently many of its samples in any other Riesz basis. This framework can be viewed as an extension of the well-known consistent reconstruction technique (Eldar et al.). However, whilst the latter imposes stringent assumptions on the reconstruction basis, and may in practice be unstable, our framework allows for recovery in any (Riesz) basis in a manner that is completely stable.

Whilst the classical Shannon Sampling Theorem is a special case of our theorem, this framework allows us to exploit additional information about the approximated vector (or, in this case, function), for example sparsity or regularity, to design a reconstruction basis that is better suited. Examples are presented illustrating this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adcock, B., Hansen, A.C.: Generalized sampling and infinite dimensional compressed sensing. Technical report NA2011/02, DAMTP, University of Cambridge (submitted)

  2. Adcock, B., Hansen, A.C.: Generalized sampling and the stable and accurate reconstruction of piecewise analytic functions from their Fourier coefficients. Technical report NA2011/12, DAMTP, University of Cambridge (submitted)

  3. Adcock, B., Hansen, A.C.: Sharp bounds, optimality and a geometric interpretation for generalised sampling in Hilbert spaces. Technical report NA2011/10, DAMTP, University of Cambridge (submitted)

  4. Adcock, B., Hansen, A.C.: Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to appear)

  5. Adcock, B., Hansen, A.C., Herrholz, E., Teschke, G.: Generalized sampling: extension to frames and ill-posed problems. Technical report NA2011/17, DAMTP, University of Cambridge (submitted)

  6. Adcock, B., Hansen, A.C., Herrholz, E., Teschke, G.: Generalized sampling, infinite-dimensional compressed sensing, and semi-random sampling for asymptotically incoherent dictionaries. Technical report NA2011/13, DAMTP, University of Cambridge (submitted)

  7. Aldroubi, A.: Oblique projections in atomic spaces. Proc. Am. Math. Soc. 124(7), 2051–2060 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aldroubi, A., Feichtinger, H.: Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: the L p-theory. Proc. Am. Math. Soc. 126(9), 2677–2686 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Böttcher, A.: Infinite matrices and projection methods. In: Lectures on Operator Theory and Its Applications, Waterloo, ON, 1994. Fields Inst. Monogr., vol. 3, pp. 1–72. Amer. Math. Soc., Providence (1996)

    Google Scholar 

  10. Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)

    Article  MATH  Google Scholar 

  11. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  Google Scholar 

  12. Eldar, Y.: Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl. 9(1), 77–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eldar, Y.: Sampling without input constraints: consistent reconstruction in arbitrary spaces. In: Zayed, A.I., Benedetto, J.J. (eds.) Sampling, Wavelets and Tomography, pp. 33–60. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  14. Eldar, Y., Werther, T.: General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process. 3(3), 347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feichtinger, H., Pesenson, I.: Recovery of band-limited functions on manifolds by an iterative algorithm. In: Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, pp. 137–152. Amer. Math. Soc., Providence (2004)

    Chapter  Google Scholar 

  16. Feichtinger, H.G., Pandey, S.S.: Recovery of band-limited functions on locally compact abelian groups from irregular samples. Czechoslov. Math. J. 53(128), 249–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gröchenig, K., Rzeszotnik, Z., Strohmer, T.: Convergence analysis of the finite section method and Banach algebras of matrices. Integral Equ. Oper. Theory 67(2), 183–202 (2010)

    Article  MATH  Google Scholar 

  18. Hagen, R., Roch, S., Silbermann, B.: C -Algebras and Numerical Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 236. Dekker, New York (2001)

    MATH  Google Scholar 

  19. Hansen, A.C.: On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal. 254(8), 2092–2126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansen, A.C.: On the solvability complexity index, the n-pseudospectrum and approximations of spectra of operators. J. Am. Math. Soc. 24(1), 81–124 (2011)

    Article  MATH  Google Scholar 

  21. Heinemeyer, E., Lindner, M., Potthast, R.: Convergence and numerics of a multisection method for scattering by three-dimensional rough surfaces. SIAM J. Numer. Anal. 46(4), 1780–1798 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hrycak, T., Gröchenig, K.: Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys. 229(3), 933–946 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerri, A.: The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations. Springer, Berlin (1998)

    MATH  Google Scholar 

  24. Jerri, A.J.: The Shannon sampling theorem: its various extensions and applications: A tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    Article  MATH  Google Scholar 

  25. Jung, J.-H., Shizgal, B.D.: Generalization of the inverse polynomial reconstruction method in the resolution of the Gibbs phenomenon. J. Comput. Appl. Math. 172(1), 131–151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kammler, D.W.: A First Course in Fourier Analysis, 2nd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  27. Lindner, M.: Infinite Matrices and Their Finite Sections. Frontiers in Mathematics. Birkhäuser, Basel (2006). An introduction to the limit operator method

    MATH  Google Scholar 

  28. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press Inc., San Diego (1998)

    MATH  Google Scholar 

  29. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. AIEE 47, 617–644 (1928)

    Google Scholar 

  30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  31. Tadmor, E.: Filters, mollifiers and the computation of the Gibbs’ phenomenon. Acta Numer. 16, 305–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Unser, M.: Sampling—50 years after Shannon. Proc. IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  33. Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42(11), 2915–2925 (1994)

    Article  Google Scholar 

  34. Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edinb. 35, 181–194 (1915)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Emmanuel Candès and Hans G. Feichtinger for valuable discussions and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders C. Hansen.

Additional information

Communicated by Thomas Strohmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adcock, B., Hansen, A.C. A Generalized Sampling Theorem for Stable Reconstructions in Arbitrary Bases. J Fourier Anal Appl 18, 685–716 (2012). https://doi.org/10.1007/s00041-012-9221-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-012-9221-x

Keywords

Mathematics Subject Classification

Navigation