Skip to main content
Log in

Population genetic structure of native Iranian population of Apis mellifera meda based on intergenic region and COX2 gene of mtDNA

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The role of honeybees is demonstrated in pollination and increasing crop production. The two factors, migration and importation of queens, affect biodiversity of honeybee populations. Sampling was conducted from all provinces (31 provinces) of Iran in the spring and summer seasons of 2015. The tRNAleu gene, intergenic region and partial COX2 gene were used for studying honeybee populations. The phylogenetic trees were depicted using MrBayes 3.2 software by the Bayesian method and PAUP software by the Parsimony method. Results demonstrated that intergenic region and COX2 gene could segregate subspecies and evolutionary lineages from each other. A comparison of A. m. meda with some commercial subspecies demonstrated that there were 16 nucleotide differences in the intergenic regions and partial COX2 gene; 10 and 6 nucleotide differences were found in the intergenic regions and partial COX2, respectively. Results indicated that all intergenic regions of collected samples from Iran (subspecies of A. m. meda and A. m. carnica) only had the Q sequence. This study illustrated that A. m. meda was grouped into five haplotypes. The findings demonstrated that the least nucleotide diversity and segregating sites were related to the A. m. meda subspecies (π = 0.0020, S = 2). Moreover, the most nucleotide diversity and segregating sites were found in subspecies of A. m. iberiensis (π = 0.0075, S = 17). Findings showed that samples of Chramahal va Bakhtiari, Golestan, Eastern Azarbayejan, Tehran, Southern Khorasan, Shiraz, Qazvin, Mazandaran, Lorestan, Khozestan, Kordestan, Kermanshah and Sistan-Blochestan were grouped with subspecies of A. m. meda KY464957 (honeybee worker of A. m. meda from the Ruttner Bee Collection at the Bee Research Institute at Oberursel, Germany). Furthermore, the Iranian samples of Kohkeloye va Boyerahmad, Ardabil, Zanjan, Kerman and Yazd were grouped with A. m. meda FJ357806 (identified haplotype in Hakkari of Turkey, near the Iraq border). Comparisons of honeybee subspecies demonstrated that A. m. jemenitica (Y lineage) collected from Ethiopia demonstrated the highest genetic distance compared to A. m. meda (0.024–0.027). Genetic structure and demography analysis showed well-structured and normal expanding populations for all subspecies and lineages of Apis genus. Analysis by Structure and Bayesian Analysis of Population Structure (BAPS) revealed the four main clusters of Apis genus in all lineages, concordant with the results of the phylogenetic trees and MDS analysis. These four significant clusters included A, C, Y and Z lineages of honeybee and the M lineage was classified with the C lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alattal Y, Alsharhi M, Alghamdi A, Alfaify S, Mighdadi H (2014) Characterization of the native honey bee subspecies in Saudi Arabia using the mtDNA COI–COII intergenic region and morphometric characteristics. Bull Insectol 67:31–37

    Google Scholar 

  • Alburaki M, Moulin S, Legout H, Alburaki A, Garnery L (2011) Mitochondrial structure of Eastern honey bee populations from Syria, Lebanon and Iraq. Apidologie 42:628–641

    Article  CAS  Google Scholar 

  • Arias MC, Sheppard WS (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol 5:557–566

    Article  CAS  PubMed  Google Scholar 

  • Behura SK (2007) Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Mol Biol Evol 24:1492–1505

    Article  CAS  PubMed  Google Scholar 

  • Cánovas F, De la Rúa P, Serrano J, Galián J (2011) Microsatellite variability reveals beekeeping influences on Iberian honeybee populations. Apidologie 42:235–251

    Article  Google Scholar 

  • Cardoso A, Pearse DE, Jacobson S, Marshal J, Dalrymple D, Kawasaki F, Ruiz-Campos G, Garza JC (2016) Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. Conserv Genet 17:675–689

    Article  Google Scholar 

  • Charistos L, Hatjina F, Bouga M, Mladenovic MD, Maistros A (2014) Morphological discrimination of Greek honey bee populations based on geometric morphometrics analysis of wing shape. J Apicul Sci 58:75–84

    Article  Google Scholar 

  • Chen C, Liu Z, Pan Q, Chen X, Wang H, Guo H, Liu S, Lu H, Tian S, Li R, Shi W (2016) Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. spp. Mol Biol Evol 33:1337–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet JM, Garnery L (1991) Mitochondrial DNA variability in honeybees and its phylogeographic implications. Apidologie 22:627–642

    Article  CAS  Google Scholar 

  • Cornuet JM, Garnery L, Solignac M (1991) Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics 128:393–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cridland JM, Tsusui ND, Ramirez SR (2017) The complex demographic history and evolutionary origin of the western honey bee, Apis mellifera. Genome Biol Evol 9:457–472

    Article  PubMed  PubMed Central  Google Scholar 

  • De la Rúa P, Galián J, Pedersen BV, Serrano J (2006) Molecular characterization and population structure of Apis mellifera from Madeira and the Azores. Apidologie 37:699–708

    Article  Google Scholar 

  • De la Rúa P, Jaffé R, Dall’Olio R, Muñoz I, Serrano J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284

    Article  Google Scholar 

  • Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eimanifar A, Kimball RT, Braun EL, Fuchs S, Grünewald B, Ellis JD (2017) The complete mitochondrial genome of Apis mellifera meda (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B 2:268–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel M (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; Apis). J Hym Res 8:165–196

    Google Scholar 

  • Evans DJ, Schwarz RS, Chen YP, Budge G, Cornman RS, Delarua P, Miranda J, Foret S, Foster L, Gauthier L, Genersch E, Gisder S, Jarosch A, Kucharski R, Lopez D, Lun DM, Moritz R, Maleszka R, Muñoz I, Pinto MA (2013) Standard methods for molecular research in Apis mellifera. J Apicul Sci 52:8–15

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin, version 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    Article  CAS  Google Scholar 

  • Franck P, Garnery L, Solignac M, Cornuet JM (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52:1119–1134

    CAS  PubMed  Google Scholar 

  • Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430

    Article  CAS  PubMed  Google Scholar 

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Vautrin D, Cornuet JM, Solignac M (1991) Phylogenetic relationships in the genus Apis inferred from mitochondrial DNA sequence data. Apidologie 22:87–92

    Article  CAS  Google Scholar 

  • Garnery L, Cornue JM, Solignac M (1992) Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Solignac M, Celebrano G, Cornuet JM (1993) A simple test using PCRamplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021

    Article  CAS  Google Scholar 

  • Garnery L, Franck P, Baudry E, Vautrin D, Cornuet JM, Solignac M (1998) Genetic diversity of the west European honeybee (Apis mellifera mellifera and Apis mellifera iberica) II. Microsatellite loci. Genet Sel Evol 30:49–79

    Article  Google Scholar 

  • Ghasemi-Khademi T, Rajabi-Maham H, Pashaei-Rad P (2018) Genetic diversity evaluation of Persian honeybees (Apis mellifera meda) in North West of Iran, using microsatellite markers. J Wildl Biodivers 2:37–46

    Google Scholar 

  • Hall HG (1986) DNA differences found between Africanized and European honeybees. Proc Natl Acad Sci 83:4874–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall HG (1990) Parental analysis of introgressive hybridization between african and european honeybees using nuclear DNA RFLPs. Genetics 125:611–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han F, Wallberg A, Webster M (2012) From where did the Western honeybee (Apis mellifera) originate? J Ecol Evol 2:1949–1957

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc Roy Soc London 270:313–322

    Article  CAS  Google Scholar 

  • Hepburn HR, Radloff SE (2011) Honeybee of Asia. Springer, Heidelberg

    Book  Google Scholar 

  • Hung C, Drovetski SV, Zink RM (2012) Multi locus coalescence analyses support a mtDNA based phylogeographic history for a widespread Palearctic passerine bird, Sitta europaea. Evolution 66:2850–2864

    Article  PubMed  Google Scholar 

  • Hunt JG, Page ER (1992) Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theor Appl Genet 85:15–20

    Article  CAS  PubMed  Google Scholar 

  • Jabbari A, Farhoud H, Kence M (2005) Morphometric and MtDNA analysis in honeybee populations (Apis melifera L.) of north and north-west iran. In: 1th Balkan scientific conference of biology, Plovdiv, Bulgaria

  • Jara L, Muñoz I, Cepero A, Martín-Hernández R, Serrano J, Higes M, De la Rúa P (2015) Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Sci Nat 102:53–60

    Article  Google Scholar 

  • Kandemir I, Ozkan A, Moradi M (2004) A scientific note on allozyme variability in Persian honey bees (Apis mellifera meda) from the Elburz mountains in Iran. Apidologie 35:521–522

    Article  CAS  Google Scholar 

  • Kauhausen Kelle D, Keller R (1994) Morphometrical control of pure race breeding of honeybee (Apis mellifera L.). Apidologie 25:133–143

    Article  Google Scholar 

  • Kence M, Jabbari Farhoud F, Ivgin Tunca R (2009) Morphometric and genetic variability of honey bee (Apis mellifera L.) populations from northern Iran. J Apicult Res 48:247–255

    Article  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Roy Soc London 274:303–313

    Article  Google Scholar 

  • Meixner MD, Leta MA, Koeniger N, Fuchs S (2011) The honey bees of Ethiopia represent a new subspecies of Apis mellifera simensis. Apidologie 42:425–437

    Article  Google Scholar 

  • Meixner MD, Pinto MA, Bouga M, Kryger P, Ivanova E, Fuchs S (2013) Standard methods for characterising subspecies and ecotypes of Apis mellifera. J Apicul Res 52:1–28

    Article  Google Scholar 

  • Molaei M, Dolati L, Tahmasebi G (2013) Genetic diversity assessment of Iranian honey bee population in Northwest Iran using microsatellite markers and morphological characteristics. Anim Sci J 27:3–16

    Google Scholar 

  • Moritz RFA, Hawkins CF, Crozier RH, Mackinley AG (1986) A mitochondrial DNA polymorphism in honeybees (Apis mellifera L.). Cell Mol Life Sci 42:322–324

    Article  CAS  Google Scholar 

  • Muñoz I, Henriques D, Johnston JS, Chávez-Galarza J, Kryger P (2015) Reduced SNP panels for genetic indentification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PLoS ONE 10:1–18

    Google Scholar 

  • Muñoz I, Henriques D, Jara L, Johnston JS, Chávez-Galarza J, De la Rúa P, Pinto MA (2016) SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera). Mol Ecol Resour 17:783–795

    Article  PubMed  Google Scholar 

  • Nawrocka A, Kandemir I, Fuchs S, Tofilski A (2017) Computer software for identification of honey bee subspecies and evolutionary lineages. Apidologie 49:172–184

    Google Scholar 

  • Oldroyd BP, Cornuet JM, Rowe D, Rinderer ET (1995) Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325

    Article  Google Scholar 

  • Oleksa A, Tofilski A (2015) Wing geometric morphometrics and microsatellite analysis pro-vide similar discrimination of honey bee subspecies. Apidologie 46:49–60

    Article  Google Scholar 

  • Ozdil F, Fakhri B, Meydan H (2009a) Mitochondrial DNA variation in the CoxI–CoxII intergenic region among Turkish and Iranian HoneyBees (Apis mellifera L.). Biochem Genet 47:717–721

    Article  CAS  PubMed  Google Scholar 

  • Ozdil F, Yildiz MA, Hall HG (2009b) Molecular characterization of Turkish honey bee populations (Apis mellifera L.) inferred from mitochondrial DNA RFLP and sequence results. Apidologie 40:570–576

    Article  CAS  Google Scholar 

  • Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States. Genetics 170:1653–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto MA, Henriques D, Chávez-Galarza J, Kryger P, Garnery L, van der Zee R, Dahle B, Soland-Reckeweg G, de la Rúa P, Dall Olio R, Carreck NL, Johnston S (2014) Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J Apicul Res 53:269–278

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahimi A (2015) Study of the genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations using the mtDNACOI–COII intergenic region. Biologija 61:54–59

    Article  CAS  Google Scholar 

  • Rahimi A, Miromayedi A, Kahrizi D, Abdolshahi R, Kazemi E, Yari KH (2014) Microsatellite genetic diversity of Apis mellifera meda skorikov. Mol Biol Rep 41:7755–7761

    Article  CAS  PubMed  Google Scholar 

  • Rahimi A, Mirahmadi A, Kahrizi D, Zarei L, Jamali S (2016) Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cell Mol Biol (Noisy-le-grand) 62:52–58

    Google Scholar 

  • Rahimi A, Mirmoayedi A, Kahrizi D, Zarei L, Jamali S (2018) Genetic variation in Iranian Honey bees, Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) Inferred from PCR-RFLP Analysis of two mtDNA Gene Segments (COI and 16S rDNA). Sociobiology 65:482–490

    Article  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extension by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Royan M, Rahimi G, Esmaeilkhanian S, Mirhoseini SZ, Ansari Z (2007) A study on the genetic diversity of the Apis mellifera meda population in the south coast of the Caspian Sea using microsatellite markers. J Apicul Res 46:236–241

    Article  CAS  Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin

    Book  Google Scholar 

  • Ruttner F, Pourasghar D, Kauhausen D (1985) Honeybees of Iran. Apis mellifera meda skorikow the Persian bee. Apidologie 16:241–264

    Article  Google Scholar 

  • Sahebzadeh N, Rakhshani E, Tajabadi N (2017) Genetic polymorphism of Iranian populations of Apis mellifera meda using microsatellite markers. Dissertation, Univrsity of zabol, Iran

  • Sammataro D, Avitabil A (2011) Beekeepers’s handbook. Cornell University Press, Ithaca

    Google Scholar 

  • Shahrestani N (2012) Honeybee and beekeeping. Sepehr Publication, Tehran

    Google Scholar 

  • Sheppard W, Mixner M (2003) Apis mellifera pomonella, a new honey bee subspecies from Central Asia. Apidologie 34:367–375

    Article  Google Scholar 

  • Sheppard WS, Smith DR (2000) Identification of Africanderived bees in the Americas: a survey of methods. Ann Entomol Soc Am 93:159–176

    Article  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finitepopulations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013a) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Bio Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013b) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, Simões ZL, Allsopp MH, Kandemir I, De la Rúa P, Pirk CW, Webster MT (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4 variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Iran for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Nazemi Rafie or H. Rajabi-Maham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modaber, M., Nazemi Rafie, J. & Rajabi-Maham, H. Population genetic structure of native Iranian population of Apis mellifera meda based on intergenic region and COX2 gene of mtDNA. Insect. Soc. 66, 413–424 (2019). https://doi.org/10.1007/s00040-019-00701-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00701-3

Keywords

Navigation