Skip to main content
Log in

Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We consider the non-homogeneous generalised Burgers equation

$$\frac{\partial u}{\partial t} + f'(u)\frac{\partial u}{\partial x} -\nu \frac{\partial^2 u}{\partial x^2} = \eta,\ t \geq 0,\ x \in S^1.$$

Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For any solution u of this equation we consider the quasi-stationary regime, corresponding to \({t \geq T_1}\), where T 1 depends only on f and on the distribution of η. We obtain sharp upper and lower bounds for Sobolev norms of u averaged in time and in ensemble. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence. All our bounds do not depend on the initial condition or on t for \({t \geq T_1}\), and hold uniformly in ν. Estimates similar to some of our results have been obtained by Aurell, Frisch, Lutsko and Vergassola on a physical level of rigour; we use an argument from their article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. T. Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics (1998).

  3. Aurell E., Frisch U., Lutsko J., Vergassola M.: On the multifractal properties of the energy dissipation derived from turbulence data. Journal of Fluid Mechanics 238, 467–486 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bec and U. Frisch. Burgulence, Les Houches 2000: New trends in turbulence; M. Lesieur, A.Yaglom and F. David, eds., 341–383, Springer EDP-Sciences (2001).

  5. J. Bec and K. Khanin. Burgers turbulence. Physics Reports 447 (2007), 1–66

  6. Biryuk A.: Spectral properties of solutions of the Burgers equation with small dissipation. Functional Analysis and its Applications. 1(35), 1–12 (2001)

    Article  MathSciNet  Google Scholar 

  7. Boritchev A.: Estimates for solutions of a low-viscosity kick-forced generalised Burgers equation. Proceedings of the Royal Society of Edinburgh A 2(143), 253–268 (2013)

    Article  MathSciNet  Google Scholar 

  8. A. Boritchev. Note on decaying turbulence in a generalised Burgers equation, Preprint, arXiv:1208.5241.

  9. J.M. Burgers. The nonlinear diffusion equation: asymptotic solutions and statistical problems. Reidel (1974).

  10. A. Chorin. Lectures on turbulence theory. Publish or Perish, Mathematics Lecture Series, vol.5 (1975).

  11. Cole J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Quarterly of Applied Mathematics, 9, 225–236 (1951)

    MathSciNet  MATH  Google Scholar 

  12. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, Encyclopaedia of Mathematics and its Applications, vol. 45, Cambridge University Press, Cambridge (1992).

  13. G. Da Prato and J. Zabczyk. Ergodicity for infinite dimensional systems. London Mathematical Society Lecture Notes, vol. 229. Cambridge University Press, Cambridge (1996).

  14. C. Dafermos. Hyperbolic conservation laws in continuum physics. Grundlehren der mathematischen Wissenschaften, Vol. 325, 3rd edn. Springer, Berlin (2010).

  15. C. Doering and J.D. Gibbon. Applied analysis of the Navier–Stokes equations. Cambridge Texts in Applied Mathematics, vol. 12. Cambridge University Press, Cambridge (1995).

  16. W E., Khanin K., Mazel A., Sinai Ya.: Probability distribution functions for the random forced Burgersequation. Physical Review Letters 10(78), 1904–1907 (1997)

    Google Scholar 

  17. W E., Khanin K., Mazel A., Sinai Ya.: Invariant measures for Burgers equation with stochastic forcing. Annals of Mathematics 151, 877–960 (2000)

    Article  MathSciNet  Google Scholar 

  18. Frisch U.: Turbulence: the legacy of A.N. Kolmogorov. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  19. Gomes D., Iturriaga R., Khanin K., Padilla P: Viscosity limit of stationary distributions for the random forced Burgers equation. Moscow Mathematical Journal 5, 613–631 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Hopf E.: The partial differential equation u t  + uu x  = μu xx . Communications in Pure and Applied Mathematics, 3(3), 201–230 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iturriaga R., Khanin K.: Burgers turbulence and random Lagrangian systems. Communications in Mathematical Physics 3(232), 377–428 (2003)

    MathSciNet  Google Scholar 

  22. Kida S.: Asymptotic properties of Burgers turbulence. Journal of Fluid Mechanics, 2(93), 337–377 (1979)

    Article  MathSciNet  Google Scholar 

  23. Kolmogorov A., Fomin S.: Introductory real analysis. Dover Publishing Company, New York (1975)

    Google Scholar 

  24. Kraichnan R.H.: Lagrangian-history statistical theory for Burgers’ equation. Physics of Fluids 2(11), 265–277 (1968)

    Article  Google Scholar 

  25. Kruzhkov S.N.: The Cauchy Problem in the large for nonlinear equations and for certain quasilinear systems of the first-order with several variables. Soviet Math. Doklady. 5, 493–496 (1964)

    Google Scholar 

  26. Kuksin S.: On turbulence in nonlinear Schrödinger equations. Geometric and Functional Analysis 7, 783–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuksin S.: Spectral properties of solutions for nonlinear PDEs in the turbulent regime. Geometric and Functional Analysis. 9, 141–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Kuksin and A. Shirikyan. Mathematics of two-dimensional turbulence. Cambridge Tracts in Mathematics, vol. 194. Cambridge University Press, Cambridge (2012).

  29. H.-H. Kuo. Gaussian measures in Banach spaces. Lecture Notes in Mathematics, Vol. 463. Springer, Berlin (1975).

  30. Landis E.: Second Order Equations of Elliptic and Parabolic Type. American Mathematical Society, New York (1998)

    MATH  Google Scholar 

  31. M. Taylor. Partial differential equations I: basic theory, Applied Mathematical Sciences, Vol. 115. Springer, Berlin (1996).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Boritchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boritchev, A. Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation. Geom. Funct. Anal. 23, 1730–1771 (2013). https://doi.org/10.1007/s00039-013-0245-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0245-4

Keywords

Navigation