Skip to main content
Log in

Interleaved Arrays with Second-Order Difference Coarray Generation for Mutual Coupling Reduction

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Nonuniform linear arrays (NLAs) have attracted considerable attention owing to their capability to enhance the degrees of freedom (DOF) and increase the array aperture, which is essential for improving performance in terms of both the direction of arrival estimation and adaptive beamforming. This paper presents two new NLAs, namely interleaved coprime array (ICA) and augmented interleaved array (AIA). The ICA consists of two uniform linear subarrays, whose inter-element spacings are coprime integers. The ICA can obtain more uniform degrees of freedom (uDOF), while maintaining weak mutual coupling effects, because its configuration includes only minority sensors interleaved. The optimal configuration of the ICA is deduced using the principle of maximizing the uDOF. Moreover, the AIA geometry is obtained by removing a redundant element in the ICA and appropriately designing the location of the additional element. For a fixed total number of sensors, the AIA can gain more uDOF and DOF than the ICA, while exhibiting lower mutual coupling effects. The closed-form expressions for the properties of the proposed array structures involving an arbitrary number of sensors are also derived. Numerical simulations are performed to verify the superiority of the proposed arrays over other sparse arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. D. Byrne, I.J. Craddock, Time-domain wideband adaptive beamforming for radar breast imaging. IEEE Trans. Antennas Propag. 63(4), 1725–1735 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bloom, W. Golomb, Application of numbered undirected graphs. Proc. IEEE 65(4), 562–570 (1977)

    Article  Google Scholar 

  3. Y. Cheng, X. Zhang, T. Liu et al., Coprime array-adaptive beamforming via atomic-norm-based sparse recovery. IET Radar Sonar Navig. 15(11), 1494–1507 (2021)

    Article  Google Scholar 

  4. A.M. Elbir, Two-dimensional DOA estimation via shifted sparse arrays with higher degrees of freedom. Circuits Syst. Signal Process. 38(12), 5549–5575 (2019)

    Article  Google Scholar 

  5. F. Gross, Smart Antennas with MATLAB (Mcgraw-Hill Publ. Comp, New York, 2015)

    Google Scholar 

  6. T. Luo, P. Chen, Z. Cao, et al., A Novel Covariance Matrix Reconstruction Method for Robust Adaptive Beamforming. ArXiv Preprint arXiv: 2210.02214v1 (2022).

  7. Z. Luo, F. Liu, Z. Zou et al., Optimum design of both linear and planar sparse arrays with sidelobe level reduction using salp swarm algorithm. J. Electromagn. Waves Appl. 35(5), 690–704 (2021)

    Article  Google Scholar 

  8. S. Liu, J. Zhao, Y. Zhang et al., 2D DOA estimation algorithm by nested acoustic vector–sensor array. Circuits Syst. Signal Process. 41, 1115–1130 (2021)

    Article  Google Scholar 

  9. C. Liu, P.P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling—Part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Liu, Y. Zhang, S. Ren et al., Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process. 65(21), 5549–5563 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Li, X. Zhang, Direction of arrival estimation of quasi-stationary signals using unfolded coprime array. IEEE Access. 5, 6538–6545 (2017)

    Article  Google Scholar 

  12. Y. Liu, Z. Nie, Q. Liu, Reducing the number of elements in a linear antenna array by the matrix pencil method. IEEE Trans. Antennas Propag. 56(9), 2955–2962 (2008)

    Article  Google Scholar 

  13. Z. Li, J. Cai, C. Hao, Synthesis of sparse linear arrays using reweighted gridless compressed sensing. IET Microw Antennas Propag. 15(15), 1945–1959 (2021)

    Article  Google Scholar 

  14. S. Liu, Z. Mao, Y.D. Zhang et al., Rank minimization-based Toeplitz reconstruction for DOA estimation using coprime array. IEEE Commun. Lett. 25(7), 2265–2269 (2021)

    Article  Google Scholar 

  15. S. Mohammadzadeh, V.H. Nascimento, R. Lamare et al., Robust adaptive beamforming based on virtual sensors using low-complexity spatial sampling. Signal Process. 188, 108172 (2021)

    Article  Google Scholar 

  16. A. Moffet, Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 16(2), 172–175 (1968)

    Article  Google Scholar 

  17. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm (IEEE Signal Process. Educ. Workshop, Sedona, USA, 2011), pp.289–294

    Google Scholar 

  19. S. Qin, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Rajamki, V. Koivunen, Sparse linear nested array for active sensing, in Proc. 25th Eur. Signal Process. Con. 1976–1980 (2017).

  21. A. Raza, W. Liu, Q. Shen, Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 67(8), 2052–2065 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Shi, Y. Li, D. Yang et al., DOA estimation of coherent signals based on the sparse representation for acoustic vector-sensor arrays. Circuits Syst. Signal Process. 39, 3553–3573 (2020)

    Article  MATH  Google Scholar 

  23. J. Shi, G. Hu, X. Zhang et al., Generalized nested array: Optimization for degrees of freedom and mutual coupling. IEEE Commun. Lett. 22(6), 1208–1211 (2018)

    Article  Google Scholar 

  24. H.L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory (Wiley, New York, 2002)

    Book  Google Scholar 

  25. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. W. Wang, S. Ren, Z. Chen, Unified coprime array with multi-period subarrays for direction-of-arrival estimation. Digit. Signal Process. 74, 30–42 (2018)

    Article  MathSciNet  Google Scholar 

  27. M. Yang, J. Li, C. Ye et al., Unfolded coprime linear array with three subarrays for non-Gaussian signals: configuration design and DOA estimation. Sensors 22(4), 1339–1358 (2022)

    Article  Google Scholar 

  28. X. Zhang, W. Jiang, K. Huo et al., Robust adaptive beamforming based on linearly modified atomic-norm minimization with target contaminated data. IEEE Trans. Signal Process. 68, 5138–5151 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Zheng, W. Wang, Y. Kong et al., MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. Signal Process. 67(7), 1728–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Zheng, Y. Huang, W. Wang et al., Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 69, 5345–5358 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Zhang, C. Shen, H. Li et al., Direction of arrival estimation and robust adaptive beamforming with unfolded augmented coprime array. IEEE Access. 8, 22314–22323 (2020)

    Article  Google Scholar 

  32. C. Zhou, Z. Shi, Y. Gu, Coprime array adaptive beamforming with enhanced degrees-of-freedom capability, in 2017 IEEE Radar Conference Seattle, WA, USA. p. 1357–1361 (2017).

  33. C. Zhou, Y. Gu, S. He et al., A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 67(2), 1099–1112 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been supported partly by the National Natural Science Foundation of China (Grant Nos. 61773389 and 61903375), Natural Science Foundation of Shaanxi Province (2021KJXX-22, 2020JQ-298), Post-doctoral Science Foundation of China (2019M663635), and Special Support Plan for High-level Talents in Shaanxi Province (TZ0328).

Author information

Authors and Affiliations

Authors

Contributions

YL: conceptualization, methodology, and writing. CH: supervision and software. FC: review. FW: review. WZ: review. ZG: review.

Corresponding author

Correspondence to Chuan He.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proofs of Property 1

Since the generated virtual sensors are symmetric at zero position, we only need to determine that the positive part of difference coarray contains consecutive lags in \([1,(N - P + 2)M - 2]\). The self-difference sets of subarrays 1 and 2 can be respectively expressed as follows:

$$ \begin{gathered} {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{1} }}^{\dag } = \left\{ {\left. {(n - 1)M} \right|n = 1,2, \ldots ,N} \right\}, \hfill \\ {\mathbb{D}}_{{{\mathbb{S}}_{2} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {(m - 1)(M - 1)} \right|m = 1,2, \ldots ,M} \right\}. \hfill \\ \end{gathered} $$
(36)

Here, \({\mathbb{D}}_{{{\mathbb{S}}_{i} ,{\mathbb{S}}_{j} }}^{\dag }\) denote the non-negative elements of \({\text{diff}} \left( {{\mathbb{S}}_{i} ,{\mathbb{S}}_{j} } \right)\). The cross-difference set of the two subarrays can be described as

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {(n - N + P - m)M + (m - 1)} \right|} \right|n = 1,2, \ldots ,N;m = 1,2, \ldots ,M} \right\}. $$
(37)

When \(t_{1} = P\), \(m = 2,3, \ldots ,t_{1}\), and \(n = N - t_{1} + m\) are set, (37) becomes

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {m - 1} \right|} \right|m = 2,3, \ldots ,P} \right\} = \left\{ {1,2, \ldots ,P - 1} \right\}. $$
(38)

If \(t_{2} = 1\), \(m = 1,2, \ldots ,P + t_{2}\), and \(n = N - P + m - t_{2}\) are used, then

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {M - m + 1} \right|} \right|m = 1,2, \ldots ,P + 1} \right\} = \left\{ {M,M - 1, \ldots ,M - P} \right\}. $$
(39)

The interval, \([1,M]\), should be continuous to maintain sufficient consecutive lags. According to (38) and (39), we can conclude that \(M - P - (P - 1) = M - 2P + 1 \le 1\) must be satisfied. Then, \(P \ge {M \mathord{\left/ {\vphantom {M 2}} \right. \kern-0pt} 2}\) can be got. Based on Sect. 3.3, \(P\) is set to the minimum integer exceeding or equaling \({M \mathord{\left/ {\vphantom {M 2}} \right. \kern-0pt} 2}\), i.e., \(P = \left\lfloor {{{(M + 1)} \mathord{\left/ {\vphantom {{(M + 1)} 2}} \right. \kern-0pt} 2}} \right\rfloor\).

When \(t_{1} = P - 1\), \(m = 2,3, \ldots ,t_{1}\), and \(n = N - t_{1} + m\) are set, we can yield

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {M + (m - 1)} \right|} \right|m = 2,3, \ldots ,P - 1} \right\} = \left\{ {M + 1,M + 2, \ldots ,M + P - 2} \right\}. $$
(40)

If \(t_{2} = 2\), \(m = 1,2, \ldots ,P + t_{2}\), and \(n = N - P + m - t_{2}\) are utilized, the following formula can be gained:

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {2M - (m - 1)} \right|} \right|m = 1,2, \ldots ,P + 2} \right\} = \left\{ {2M,2M - 1, \ldots ,2M - P - 1} \right\}. $$
(41)

As \(P = \left\lfloor {{{(M + 1)} \mathord{\left/ {\vphantom {{(M + 1)} 2}} \right. \kern-0pt} 2}} \right\rfloor\), \(2M - P - 1 - (M + P - 2) = M - 2P + 1 \le 1\) can be concluded, which implies that \([1,2M]\) is continuous. Similarly, when \(t_{1} = 2\), \(m = t_{1}\), and \(n = N - t_{1} + m\) are set, \({\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {(P - 2)M + 1} \right\}\) can be obtained. If we employ \(t_{2} = P - 1\), \(m = 1,2, \ldots ,P + t_{2}\), and \(n = N - P + m - t_{2}\), then

$$ \begin{gathered} {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {(P - 1)M - (m - 1)} \right|} \right|m = 1,2, \ldots ,2P - 1} \right\} \hfill \\ = \left\{ {(P - 1)M,(P - 1)M - 1, \ldots ,(P - 1)M - (2P - 2)} \right\}. \hfill \\ \end{gathered} $$
(42)

Based on \(P = \left\lfloor {{{(M + 1)} \mathord{\left/ {\vphantom {{(M + 1)} 2}} \right. \kern-0pt} 2}} \right\rfloor\), \((P - 1)M - (2P - 2) - [(P - 2)M + 1] = M - 2P + 1 \le 1\) can be derived. Therefore, as \(t_{1}\) changes from \(P\) to 2 while \(t_{2}\) varies from 1 to \(P - 1\), we can determine that \([1,(P - 1)M]\) is consecutive.

When \(m = 2,3, \ldots ,M\), \(n = N - M + m - t_{3}\), and \(t_{3} = 0,1, \ldots ,N - M + 1\), it can be derived as

$$ \begin{gathered} {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {\left. {\left| {(M - P + t_{3} )M - (m - 1)} \right|} \right|m = 2,3, \ldots ,M;t_{3} = 0,1, \ldots ,N - M + 1} \right\} \hfill \\ \left\{ {(M - P)M - 1,(M - P)M - 2, \ldots ,(M - P)M - (M - 1)} \right\} \cup \hfill \\ \left\{ {(M - P + 1)M - 1,(M - P + 1)M - 2, \ldots ,(M - P + 1)M - (M - 1)} \right\} \cup \hfill \\ \cdots \hfill \\ \left\{ {(N - P + 1)M - 1,(N - P + 1)M - 2, \ldots ,(N - P + 1)M - (M - 1)} \right\}, \hfill \\ \end{gathered} $$
(43)

where the elements of each set are generated as \(m\) varies from 2 to \(M\); meanwhile, different sets are obtained as \(t_{3}\) changes from 0 to \(N - M + 1\). Because \(M - 2P \le 0\), \((M - P)M - (M - 1) - (P - 1)M = (M - 2P)M + 1 \le 1\) can be concluded. Consequently, \([1,(N - P + 1)M]\) is continuous. If we set \(t_{3} = N - M + 2\), \(n = N - M + m - t_{3} = m - 2\) can be yielded. Therefore, in this case, \(m \ge 3\) (i.e., \(m = 3,4, \ldots ,M\)) needs to be satisfied. Then, the following formula is derived:

$$ {\mathbb{D}}_{{{\mathbb{S}}_{1} ,{\mathbb{S}}_{2} }}^{\dag } = \left\{ {(N - P + 2)M - 2,(N - P + 2)M - 3, \ldots ,(N - P + 2)M - (M - 1)} \right\}. $$
(44)

Thus, \([1,(N - P + 2)M - 2]\) is consecutive, and \({\text{uDOF}} = 2(N - P + 2)M - 3\) is obtained. This completes the proof.

Appendix B: Proofs of Property 2

The derivation of DOF is divided into two parts; one part involves the uDOF, and the other contains the discontinuous elements in the difference coarray, excluding uDOF. According to Appendix A, the number of positive consecutive lags, \((N - P + 2)M - 2\), is coincidentally the location of the third sensor in subarray 2. Thus, when \(m = 4,5, \ldots ,M\) and \(n = 1,2, \ldots ,M - 3\), the elements exceeding the uDOF in the cross-difference set are given by

$$ \left\{ {\begin{array}{*{20}l} {\left\{ {(N - P + 2)M - 3} \right\},\quad {\text{if}} \quad m = 4,n = 1} \hfill \\ {\left\{ {(N - P + 4)M - 4,(N - P + 3)M - 4} \right\},\quad {\text{if}} \quad m = 5,n = 1,2} \hfill \\ \ldots \hfill \\ {\left\{ \begin{gathered} (N - P + M - 2)M + 1,(N - P + M - 3)M + 1, \hfill \\ \ldots ,(N - P + 2)M + 1 \hfill \\ \end{gathered} \right\},\quad {\text{if}} \quad m = M,n = 1,2, \ldots ,M - 3.} \hfill \\ \end{array} } \right. $$
(45)

The number of elements in (45) is an equivariant series, and the sum of its terms is \({{(M - 2)(M - 3)} \mathord{\left/ {\vphantom {{(M - 2)(M - 3)} 2}} \right. \kern-0pt} 2}\). Moreover, there are \(P - 2\) elements, which can be expressed as \(\left\{ {(N - P + 2)M,(N - P + 3)M, \ldots ,(N - 1)M} \right\}\), in the self-difference sets of the two subarrays. In summary, the DOF of the proposed ICA configuration can be formulated as

$$ \begin{gathered} {\text{DOF}} = \underbrace {2(N - P + 2)M - 3}_{{\text{uDOF}}} + 2{{(M - 2)(M - 3)} \mathord{\left/ {\vphantom {{(M - 2)(M - 3)} 2}} \right. \kern-0pt} 2} + 2(P - 2) \hfill \\ \, = 2NM - 2PM - M + M^{2} + 2P - 1 \hfill \\ \, = 2NM + 2P(1 - M) + (M - 1)^{2} + 2(M - 1) - M \hfill \\ \, = 2NM + (M - 1)(M - 2P + 1) - M. \hfill \\ \end{gathered} $$
(46)

If \(M\) is odd, then \(M - 2P + 1 = 0\); otherwise, \(M - 2P + 1 = 1\). This completes the proof.

Appendix C: Proofs of Property 4

For the ICA structure, the entries in the difference coarray, which are associated with the deleted element, can be expressed as

$$ \left\{ {\left. {\left| {nM} \right|} \right|n = 1,2, \ldots ,N - P} \right\} \cup \left\{ {\left. {\left| {m(M - 1)} \right|} \right|m = 1,2, \ldots ,M - 1} \right\}. $$
(47)

The above-mentioned sets can be represented by the self-difference sets of the proposed AIA. Therefore, the uDOF of the AIA will invariably be greater than or equal to the ICA. Further, we consider the cross-difference set between the additional element (i.e., the \(M\)-th sensor in subarray 2) and subarray 1, given as follows:

$$ \begin{array}{*{20}l} {\left\{ {\left. {\left| {(N - P + M - n + 1)M - 1} \right|} \right|n = 1,2, \ldots ,N - P} \right\} \cup } \hfill \\ {\left\{ {\left. {\left| {(N - P + M - n)M - 1} \right|} \right|n = N - P + 1,N - P + 2, \ldots ,N - 1} \right\},} \hfill \\ \end{array} $$
(48)

where \(MM - 1\) is the interrupted term due to the deleted element. According to (19), we can get \(\left| {{{3M} \mathord{\left/ {\vphantom {{3M} 2}} \right. \kern-0pt} 2} - (\tilde{N} + 2)} \right| \approx 0\), i.e., \((N - P + 2) \approx {{3M} \mathord{\left/ {\vphantom {{3M} 2}} \right. \kern-0pt} 2} \ne M\). Thus, \((N - P + 2)M - 1\) is not the interrupted term in (48).

Since \(2 < M \le N\), \((M - P + 1)M - 1 < (N - P + 2)M - 1 < (N - P + M)M - 1\) can be derived. This implies that \((N - P + 2)M - 1\) is inclusive of (48). Hence, \([1,(N - P + 2)M - 1]\) is continuous. If \(P = 2\), the term, \((N - P + 2)M\), does not exist in the difference coarray, and the uDOF is equal to \(2(N - P + 2)M - 1\). When \(P \ge 3\), \((N - P + 2)M\) is present. If \(m = 3,4, \ldots ,M - 1\) and \(n = m - 2\) are applied, the cross-difference set can be constructed as

$$ \begin{aligned} {\mathbb{D}}_{{{\mathbb{S}}_{3} ,{\mathbb{S}}_{4} }}^{\dag } = & \left\{ {\left. {\left| {(N - P + m - n + 1)M - m} \right|} \right|m = 3,4, \ldots ,M - 1} \right\} \\ = & \left\{ {(N - P + 3)M - 3,(N - P + 3)M - 4, \ldots ,(N - P + 2)M + 1} \right\}. \\ \end{aligned} $$
(49)

Therefore, \([1,(N - P + 3)M - 3]\) is consecutive, and \({\text{uDOF}} = 2(N - P + 3)M - 5\) can be gained. This completes the proof.

Appendix D: Proofs of Property 5

First, we consider the general case of \(P \ge 3\). Similar to Appendix B, it is obvious that the number of positive consecutive lags, \((N - P + 3)M - 3\), is the position of the fourth element in subarray 2. Next, if \(m = 5,6, \ldots ,M - 1\) and \(n = 1,2, \ldots ,M - 4\), the elements exceeding the uDOF in the cross-difference set has the following general form:

$$ \left\{ {\begin{array}{*{20}l} {\begin{array}{*{20}l} {\left\{ {(N - P + 5)M - 5} \right\},} \hfill & {\quad {\text{if}} \quad m = 5,n = 1} \hfill \\ {\left\{ {(N - P + 6)M - 6,(N - P + 5)M - 6} \right\},} \hfill & {\quad {\text{if}} \quad m = 6,n = 1,2} \hfill \\ \end{array} } \hfill \\ \cdots \hfill \\ {\begin{array}{*{20}l} {\left\{ \begin{gathered} (N - P + M - 2)M + 1,(N - P + M - 3)M + 1, \hfill \\ \quad \ldots ,(N - P + 3)M + 1 \hfill \\ \end{gathered} \right\},} \hfill & {\quad {\text{if}} \, m = M - 1,n = 1,2, \ldots ,M - 4} \hfill \\ \end{array} .} \hfill \\ \end{array} } \right. $$
(50)

The total number of elements in (50) is \({{(M - 3)(M - 4)} \mathord{\left/ {\vphantom {{(M - 3)(M - 4)} 2}} \right. \kern-0pt} 2}\). Furthermore, the DOF generated by the M-th sensor of subarray 2 can be expressed in the following set:

$$ \left\{ \begin{gathered} (N - P + M)M - 1,(N - P + M - 1)M - 1, \hfill \\ \quad \ldots ,(N - P + 3)M - 1 \hfill \\ \end{gathered} \right\},\quad {\text{if}} \, m = M,n = 1,2, \ldots ,M - 2. $$
(51)

Similarly, for the self-difference sets of two subarrays, the number of elements exceeding the uDOF is \(P - 3\), denoted as \(\left\{ {(N - P + 3)M,(N - P + 4)M, \ldots ,(N - 1)M} \right\}\). Thus, the DOF of the AIA is summarized as

$$ \begin{aligned} {\text{DOF}} = & \underbrace {{2(N - P + 3)M - 5}}_{{{\text{uDOF}}}} + 2(M - 3)(M - 4)/2 + 2(M - 2) + 2(P - 3) \\ = & 2NM - 2PM + M + M^{2} + 2P - 3 = 2NM + 2P(1 - M) + (M - 1)^{2} + 2(M - 1) + M - 2 \\ = & 2NM + (M - 1)(M - 2P + 1) + M - 2. \\ \end{aligned} $$
(52)

If \(M\) is odd, then \({\text{DOF}} = 2NM + M - 2\); otherwise, \({\text{DOF}} = 2NM + 2M - 3\).

Subsequently, the special case of \(P = 2\) is considered. When \(M = 3\) is used, the term exceeding the uDOF in the cross-difference set is given by \(\left\{ {(N - P + M)M - 1} \right\},\quad {\text{if}} \, m = 3,n = 1\). Then, the DOF can be obtained as

$$ \begin{aligned} {\text{DOF}} = & \underbrace {{2(N - P + 2)M - 1}}_{{{\text{uDOF}}}} + 2 \\ = & 2NM + 1 = 2NM + M - 2. \\ \end{aligned} $$
(53)

In the case of \(M = 4\), the elements beyond the uDOF are as follows:

$$ \left\{ {\begin{array}{*{20}l} {\left\{ {(N - P + 3)M - 3} \right\},\quad {\text{if}} \, m = 3,n = 1} \hfill \\ {\left\{ {(N - P + 4)M - 1,(N - P + 3)M - 1} \right\},\quad {\text{if}} \, m = 4,n = 1,2} \hfill \\ \end{array} .} \right. $$
(54)

Thus, the DOF can be calculated as

$$ \begin{aligned} {\text{DOF}} = & \underbrace {{2(N - P + 2)M - 1}}_{{{\text{uDOF}}}} + 6 \\ = & 2NM + 5 = 2NM + 2M - 3. \\ \end{aligned} $$
(55)

According to the above derivation, it can be observed that the approaches to calculating the DOF are consistent in all cases. This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., He, C., Cao, F. et al. Interleaved Arrays with Second-Order Difference Coarray Generation for Mutual Coupling Reduction. Circuits Syst Signal Process 42, 6029–6057 (2023). https://doi.org/10.1007/s00034-023-02384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02384-5

Keywords

Navigation