Skip to main content
Log in

Limit Cycle Synchronization of Nonlinear Systems with Matched and Unmatched Uncertainties Based on Finite-Time Disturbance Observer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper focuses on the limit cycle control of uncertain nonlinear systems in the presence of both matched and unmatched uncertainties. For this purpose, first, a virtual nonlinear system is constructed which has the desired limit cycle in its phase trajectories. The Lyapunov stability theorem for positive limit sets is utilized to confirm the stability of the created limit cycle in the virtual system. Next, by using a modified nonsingular terminal sliding mode control method, a robust controller is designed to synchronize the trajectories of the actual nonlinear system with the corresponding virtual one in a finite time. It is assumed that the actual system suffers from both matched and unmatched uncertainties and/or unknown external disturbances. A nonlinear terminal sliding surface is designed with the aim of a finite-time disturbance observer to tackle these unknown terms. The finite-time Lyapunov stability theorem is utilized to confirm the stability and robustness of the designed control law. Through simulation results, the finite-time stabilization of the synchronization errors and appropriate performance of the proposed control law are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Aguilar-Ibánez, J.C. Martinez, J. de Jesus Rubio, M.S. Suarez-Castanon, Inducing sustained oscillations in feedback-linearizable single-input nonlinear systems. ISA Trans. 54, 117–124 (2015)

    Article  Google Scholar 

  2. B.R. Andrievsky, N.V. Kuznetsov, G.A. Leonov, Methods for suppressing nonlinear oscillations in astatic auto-piloted aircraft control systems. J. Comput. Syst. Sci. Int. 56(3), 455–470 (2017)

    Article  MathSciNet  Google Scholar 

  3. J. Aracil, F. Gordillo, E. Ponce, Stabilization of oscillations through backstepping in high-dimensional systems. IEEE Trans. Autom. Control 50(5), 705–710 (2005)

    Article  MathSciNet  Google Scholar 

  4. F. Asano, M. Yamakita, N. Kamamichi, Z.-W. Luo, A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Trans. Robot. Automation 20(3), 565–573 (2004)

    Article  Google Scholar 

  5. M. Benmiloud, A. Benalia, Finite-time stabilization of the limit cycle of two-cell DC/DC converter: a hybrid approach. Nonlinear Dyn. 83(1–2), 319–332 (2016)

    Article  MathSciNet  Google Scholar 

  6. S.P. Bhat, D.S. Bernstein, Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst 17(2), 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  7. I. Boiko, Analysis of orbital stability in lure system based on dynamic harmonic balance. J. Frankl. Inst. 354(12), 4826–4837 (2017)

    Article  MathSciNet  Google Scholar 

  8. Y. Feng, X. Yu, Z. Man, Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  Google Scholar 

  9. M. Golestani, S. Mobayen, F. Tchier, Adaptive finite-time tracking control of uncertain non-linear n-order systems with unmatched uncertainties. IET Control Theory Appl. 10(14), 1675–1683 (2016)

    Article  MathSciNet  Google Scholar 

  10. H. Gritli, N. Khraief, A. Chemori, S. Belghith, Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dyn 89, 1–32 (2017)

    Article  MathSciNet  Google Scholar 

  11. W.M. Haddad, V. Chellaboina, Nonlinear dynamical systems and control: a Lyapunov-based approach (Princeton University Press, Princeton, 2011)

    Book  Google Scholar 

  12. A.R. Hakimi, T. Binazadeh, Robust generation of limit cycles in nonlinear systems: application on two mechanical systems. J. Comput. Nonlinear Dyn. 12(4), 041013 (2017)

    Article  Google Scholar 

  13. A.R. Hakimi, T. Binazadeh, Inducing sustained oscillations in a class of nonlinear discrete-time systems. J. Vib. Control 24, 1162–1170 (2018)

    Article  MathSciNet  Google Scholar 

  14. A.R. Hakimi, T. Binazadeh, Generation of stable oscillations in uncertain nonlinear systems with matched and unmatched uncertainties. Int. J. Control 92(1), 163–174 (2019)

    Article  MathSciNet  Google Scholar 

  15. E. Jafari, T. Binazadeh, Modified composite nonlinear feedback control for output tracking of nonstep signals in singular systems with actuator saturation. Int. J. Robust Nonlinear Control 28(16), 4855–4899 (2018)

    Article  MathSciNet  Google Scholar 

  16. Y. Ji, F. Ding, Multiperiodicity and exponential attractivity of neural networks with mixed delays. Circuits Syst. Signal Process. 36(6), 2558–2573 (2017)

    Article  MathSciNet  Google Scholar 

  17. T. Kai, Limit-cycle-like control for 2-dimensional discrete-time nonlinear control systems and its application to the Hénon map. Commun. Nonlinear Sci. Numer. Simul. 18(1), 171–183 (2013)

    Article  MathSciNet  Google Scholar 

  18. H.K. Khalil, Nonlinear systems, vol. 3 (Prentice Hall, Upper Saddle River, 2002)

    MATH  Google Scholar 

  19. S. Li, Y.-P. Tian, Finite-time stability of cascaded time-varying systems. Int. J. Control 80(4), 646–657 (2007)

    Article  MathSciNet  Google Scholar 

  20. T.-S. Li, D. Wang, G. Feng, S.-C. Tong, A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(3), 915–927 (2010)

    Article  Google Scholar 

  21. S. Li, J. Yang, W.-H. Chen, X. Chen, Disturbance observer-based control: methods and applications (CRC Press, Boca Raton, 2014)

    Google Scholar 

  22. H. Li, Y. Wang, D. Yao, R. Lu, A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)

    Article  MathSciNet  Google Scholar 

  23. H. Liang, L. Zhang, H.R. Karimi, Q. Zhou, Fault estimation for a class of nonlinear semiMarkovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear Control 28(18), 5962–5980 (2018)

    Article  Google Scholar 

  24. B. Novák, J.J. Tyson, Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9(12), 981–991 (2008)

    Article  Google Scholar 

  25. R. Ortega, J.A.L. Perez, P.J. Nicklasson, H.J. Sira-Ramirez, Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications (Springer, Berlin, 2013)

    Google Scholar 

  26. R. Zurakowski, A. R. Teel, Enhancing immune response to HIV infection using MPC-based treatment scheduling. in Proceedings of the American Control Conference, vol. 2, pp. 1182–1187 (2003)

  27. P. Rani, P. Kokil, H. Kar, L 2L Suppression of limit cycles in interfered digital filters with generalized overflow nonlinearities. Circuits Syst. Signal Process. 36(7), 2727–2741 (2017)

    Article  Google Scholar 

  28. C. Sikder, I. Husain, W. Ouyang, Cogging torque reduction in flux-switching permanent-magnet machines by rotor pole shaping. IEEE Trans. Ind. Appl. 51(5), 3609–3619 (2015)

    Article  Google Scholar 

  29. J.T.M. Van Beek, R. Puers, A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22(1), 013001 (2011)

    Article  Google Scholar 

  30. S. Varigonda, T.T. Georgiou, P. Daoutidis, Numerical solution of the optimal periodic control problem using differential flatness. IEEE Trans. Autom. Control 49(2), 271–275 (2004)

    Article  MathSciNet  Google Scholar 

  31. Y. Zhang, H. Li, J. Sun, W. He, Cooperative adaptive event-triggered control for multi-agent systems with actuator failures. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2883907

  32. J. Yang, S. Li, J. Su, X. Yu, Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  33. J. Yang, S. Li, X. Yu, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  34. J. Yu, M. Chen, Fault tolerant control for near space vehicles with input saturation using disturbance observer and neural networks. Circuits Syst. Signal Process. 34(7), 2091–2107 (2015)

    Article  Google Scholar 

  35. L. Yu, J. Huang, S. Fei, Sliding mode switching control of manipulators based on disturbance observer. Circuits Syst. Signal Process. 36(6), 2574–2585 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Binazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakimi, A.R., Binazadeh, T. Limit Cycle Synchronization of Nonlinear Systems with Matched and Unmatched Uncertainties Based on Finite-Time Disturbance Observer. Circuits Syst Signal Process 38, 5488–5507 (2019). https://doi.org/10.1007/s00034-019-01134-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01134-w

Keywords

Navigation