Skip to main content
Log in

Delay and Its Time-Derivative-Dependent Model Reduction for Neutral-Type Control System

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of model reduction for neutral-type control system. For a given stable neutral-type control system, our attention is focused on the construction of a reduced-order model, which not only approximates the original system well in a robust performance but is also translated into a linear lower-dimensional system. Sufficient condition is proposed for the asymptotic stability with an error performance for the error system. Then, the model reduction problem is solved by using the projection approach, which casts the model reduction subject to linear matrix inequality constraints by employing the cone complementary linearization algorithm. Moreover, by further extending the results, model reduction with special structures is obtained, i.e., no neutral-type model. A numerical simulation example is provided to demonstrate the effectiveness and applicability of the proposed controller design approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C.K. Ahn, P. Shi, M.V. Basin, Two-dimensional dissipative control and filtering for roesser model. IEEE Trans. Autom. Control 60(7), 1745–1759 (2015)

    Article  MathSciNet  Google Scholar 

  2. C.K. Ahn, L. Wu, P. Shi, Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69, 356–363 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bellen, N. Guglielmi, A.E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(1), 212–215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Chen, Z. Liu, Y. Zhang, C.P. Chen, S. Xie, Saturated nussbaum function based approach for robotic systems with unknown actuator dynamics. IEEE Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2475363

  5. K.M. Grigoriadis, E.B. Beran, Alternating projection algorithms for linear matrix inequalities problems with rank constraints, in Advances in Linear Matrix Inequality Methods in Control, ed. by L.E. Ghaoui, S.-I. Niculescu (SIAM, Philadelphia, PA, 2000), pp. 251–267

  6. K. Gu, A further refinement of discretized lyapunov functional method for the stability of time-delay systems. Int. J. Control 74(10), 967–976 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Ibrir, S. Diop, Robust state reconstruction of linear neutral-type delay systems with application to lossless transmission lines: a convex optimization approach. IMA J. Math. Control Inf. 26(3), 281–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Kang, D.H. Zhai, G.P. Liu, Y.B. Zhao, On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching. IEEE Trans. Cybern. 46(5), 1092–1105 (2016)

    Article  Google Scholar 

  9. Y. Kang, D.H. Zhai, G.P. Liu, Y.B. Zhao, P. Zhao, Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching. IEEE Trans. Autom. Control 59(6), 1511–1523 (2014)

    Article  MathSciNet  Google Scholar 

  10. D. Kumar, S. Nagar, Model reduction by extended minimal degree optimal hankel norm approximation. Appl. Math. Model. 38(11), 2922–2933 (2014)

    Article  MathSciNet  Google Scholar 

  11. H. Li, Sampled-data state estimation for complex dynamical networks with time-varying delay and stochastic sampling. Neurocomputing 138, 78–85 (2014)

    Article  Google Scholar 

  12. H. Li, P. Shi, D. Yao, L. Wu, Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Liao, T. Huang, Asymptotic stability of a class of neutral delay neuron system in a critical case. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3320–3325 (2015)

    Article  MathSciNet  Google Scholar 

  14. Y. Liu, Z. Wang, J. Liang, X. Liu, Synchronization of coupled neutral-type neural networks with jumping-mode-dependent discrete and unbounded distributed delays. IEEE Trans. Cybern. 43(1), 102–114 (2013)

    Article  Google Scholar 

  15. H. Lu, W. Zhou, Y. Xu, J. Fang, D. Tong, Time-delay dependent \({H}_\infty \) model simplification for singular systems with Markovian jumping parameters. Opt. Control Appl. Methods 32(4), 379–395 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Mou, H. Ge, Adaptive consensus of wireless sensor networks under local measurement by a sink node. Int. J. Control 88(2), 256–263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Mou, J. Wang, Reference state tracking in distributed leader-following wireless sensor networks with limited errors. J. Commun. Netw. 17(6), 602–608 (2015)

    Article  Google Scholar 

  18. S.I. Niculescu, Delay effects on stability: a robust control approach, vol. 269 (Springer, Berlin, 2001)

    MATH  Google Scholar 

  19. M. Opmeer, T. Reis, A lower bound for the balanced truncation error for mimo systems. IEEE Trans. Autom. Control 60(8), 2207–2212 (2015)

    Article  MathSciNet  Google Scholar 

  20. E.R. Samuel, L. Knockaert, T. Dhaene, Model order reduction of time-delay systems using a laguerre expansion technique. IEEE Trans. Circuits Syst. I Regul. Pap. 61(6), 1815–1823 (2014)

    Article  Google Scholar 

  21. I.K. Shimatani, Spatially explicit neutral models for population genetics and community ecology: extensions of the Neyman-Scott clustering process. Theor. Popul. Biol. 77(1), 32–41 (2010)

    Article  Google Scholar 

  22. S.D. Somasundaram, N.H. Parsons, P. Li, R.C. De Lamare, Reduced-dimension robust capon beamforming using krylov-subspace techniques. IEEE Trans. Aerosp. Electron. Syst. 51(1), 270–289 (2015)

    Article  Google Scholar 

  23. D. Tong, W. Zhou, A. Dai, H. Wang, X. Mou, Y. Xu, \({H}_\infty \) model reduction for the distillation column linear system. Circuits Syst. Signal Process. 33(10), 3287–3297 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Tong, W. Zhou, Y. Gao, C. Ji, H. Su, \({H}_\infty \) model reduction for port-controlled Hamiltonian systems. Appl. Math. Model. 37(5), 2727–2736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Tong, W. Zhou, X. Zhou, J. Yang, L. Zhang, Y. Xu, Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simul. 29(1), 359–371 (2015)

    Article  MathSciNet  Google Scholar 

  26. S. Xu, J. Lam, S. Huang, C. Yang, \({H}_\infty \) model reduction for linear time-delay systems: continuous-time case. Int. J. Control 74(11), 1062–1074 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Yang, Z. Qu, J. Han, Decoupled-space control and experimental evaluation of spatial electrohydraulic robotic manipulators using singular value decomposition algorithms. IEEE Trans. Ind. Electron. 61(7), 3427–3438 (2014)

    Article  Google Scholar 

  28. D. Yue, Q.L. Han, A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model. IEEE Trans. Circuits Syst. II Express Briefs 51(12), 685–689 (2004)

    Article  Google Scholar 

  29. W. Zhou, D. Tong, Y. Gao, C. Ji, H. Su, Mode and delay-dependent adaptive exponential synchronization in \(p\)th moment for stochastic delayed neural networks with Markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 662–668 (2012)

    Article  Google Scholar 

  30. W. Zhou, D. Tong, H. Lu, Q. Zhong, J. Fang, Time-delay dependent \({H}_\infty \) model reduction for uncertain stochastic systems: continuous-time case. Circuits Syst. Signal Process. 30(5), 941–961 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (61673257, 11501367), the Natural Science Foundation of Shanghai (15ZR1419000), the Chinese Postdoctoral Science Foundation (2015M581528), the Young Teacher Training Scheme of Shanghai Universities (ZZGCD15004, ZZLX15031), the “Zhanchi” Talents Plan of Shanghai University of Engineering Science (nhrc-2015-18), Doctoral Starting Foundation of Shanghai University of Engineering Science (Xiaoqi 2015-21) and the Scientific Research Foundation of SLUC (14-1908-00-06017, 2015QNYB04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongbing Tong or Qiaoyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Chen, Q. Delay and Its Time-Derivative-Dependent Model Reduction for Neutral-Type Control System. Circuits Syst Signal Process 36, 2542–2557 (2017). https://doi.org/10.1007/s00034-016-0411-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0411-7

Keywords

Navigation