Skip to main content
Log in

Solitary waves in mass-in-mass lattices

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the existence of spatially localized traveling wave solutions of the mass-in-mass lattice. Under an anti-resonance condition first discovered by Kevrekidis, Stefanov and Xu, we prove that such solutions exist in two distinguished limits; the first where the mass of the internal resonator is small and the second where the internal spring is very stiff. We then numerically simulate the solutions, and these simulations indicate that the anti-resonant traveling waves are very weakly unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amick, C.J., Toland, J.F.: Solitary waves with surface tension. I. Trajectories homoclinic to periodic orbits in four dimensions. Arch. Rational Mech. Anal. 118, 37–69 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Beale, J.T.: Water waves generated by a pressure disturbance on a steady stream. Duke Math. J. 47, 297–323 (1980)

    MathSciNet  MATH  Google Scholar 

  3. Beale, J.T.: Exact solitary water waves with capillary ripples at infinity. Commun. Pure Appl. Math. 44, 211–257 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Benilov, E.S., Grimshaw, R., Kuznetsova, E.P.: The generation of radiating waves in a singularly-perturbed Korteweg–de Vries equation. Phys. D 69, 270–278 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Bonanomi, L., Theocharis, G., Daraio, C.: Wave propagation in granular chains with local resonances. Phys. Rev. E 91, 033208 (2015)

    Google Scholar 

  6. Boyd, J.P.: Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics. Mathematics and Its Applications, vol. 442. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  7. Chong, C., Porter, M.A., Kevrekidis, P.G., Daraio, C.: Nonlinear coherent structures in granular crystals. J. Phys. Condensed Matter. 29, 413003 (2017)

    Google Scholar 

  8. Dauxois, T.: Fermi, Pasta, Ulam, and a mysterious lady. Phys. Today 61, 55–57 (2008)

    Google Scholar 

  9. English, J.M., Pego, R.L.: On the solitary wave pulse in a chain of beads. Proc. Am. Math. Soc. 133, 1763–1768 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Faver, T.E.: Small mass nanopteron traveling waves in mass-in-mass lattices with cubic FPUT potential. arXiv:1910.12313. To appear in Journal of Dynamics and Differential Equations

  11. Faver, T.E.: Nanopteron-stegoton traveling waves in spring dimer Fermi–Pasta—Ulam–Tsingou lattices. Q. Appl. Math. 78, 363–429 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Faver, T.E., Hupkes, H.J.: Micropteron traveling waves in diatomic Fermi–Pasta–Ulam–Tsingou lattices under the equal mass limit. Phys. D Nonlinear Phenomena 410, 132538 (2020)

    MathSciNet  Google Scholar 

  13. Faver, T.E., Wright, J.D.: Exact diatomic Fermi–Pasta–Ulam–Tsingou solitary waves with optical band ripples at infinity. SIAM J. Math. Anal. 50, 182–250 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Fermi, E., Pasta, J., Ulam, S.: Studies of nonlinear problems. Lect. Appl. Math. 12, 143–56 (1955)

    MATH  Google Scholar 

  15. Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601–1627 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Friesecke, G., Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161, 391–418 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Gantzounis, G., Serra-Garcia, M., Homma, K., Mendoza, J.M., Daraio, C.: Granular metamaterials for vibration mitigation. J. Appl. Phys. 114, 093514 (2013)

    Google Scholar 

  18. Giardetti, N., Shapiro, A., Windle, S., Wright, J.: Metastability of solitary waves in diatomic FPUT lattices. Math. Eng. 1, 419–433 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Herrmann, M.: Unimodal wavetrains and solitons in convex Fermi–Pasta–Ulam chains. Proc. R. Soc. Edinburgh 140A, 753–785 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Herrmann, M., Matthies, K.: Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains. Nonlinearity 28, 2767–2789 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Herrmann, M., Matthies, K.: Uniqueness of solitary waves in the high-energy limit of FPU-type chains. In: Gurevich, P., Hell, J., Sandstede, B., Scheel, A. (eds.) Patterns of dynamics of Springer Proceedings in Mathematics & Statistics, Springer, vol. 205, pp. 3–15 (2017)

  22. Herrmann, M., Matthies, K.: Stability of high-energy solitary waves in Fermi–Pasta–Ulam–Tsingou chains. Trans. Am. Math. Soc. 372, 3425–3486 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Hoffman, A., Wright, J.D.: Nanopteron solutions of diatomic Fermi–Pasta–Ulam–Tsingou lattices with small mass-ratio. Phys. D 358, 33–59 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Iooss, G.: Traveling waves in the Fermi—Pasta–Ulam lattice. Nonlinearity 13, 849 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Iooss, G., Kirchgässner, K.: Traveling waves in a chain of coupled nonlinear oscillators. Commun. Math. Phys. 211, 439–464 (2000)

    MATH  Google Scholar 

  26. James, G.: Nonlinear waves in newton’s cradle and the discrete $p$-schrödinger equation. Math. Models Methods Appl. Sci. 21, 2335–2377 (2011)

    MathSciNet  MATH  Google Scholar 

  27. James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains with hertzian interactions. Phys. D 251, 39–59 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Jayaprakash, K.R., Vakakis, A.F., Starsvetsky, Y.: Solitary waves in a general class of granular dimer chains. J. Appl. Phys. 112, 034908 (2012)

    Google Scholar 

  29. Johnson, M.A., Wright, J.D.: Generalized solitary waves in the gravity-capillary Whitham equation. Stud. Appl. Math 144, 102–130 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Kevrekidis, P.G., Vainchtein, A., Serra-Garcia, M., Daraio, C.: Interaction of traveling waves with mass-with-mass defects within a Hertzian chain. Phys. Rev. E 87, 042911 (2013)

    Google Scholar 

  31. Kevrekidis, P.G., Stefanov, A.G., Xu, H.: Traveling waves for the mass in mass model of granular chains. Lett. Math. Phys. 106, 1067–1088 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Kim, E., Li, F., Chong, C., Theocharis, G., Yang, J., Kevrekidis, P.G.: Highly nonlinear wave propagation in elastic woodpile periodic structures. Phys. Rev. Lett. 114, 118002 (2015)

    Google Scholar 

  33. Li, F., Anzel, P., Yang, J., Kevrekidis, P.G., Daraio, C.: Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014)

    Google Scholar 

  34. Lombardi, E.: Oscillatory Integrals and Phenomena Beyond all Algebraic Orders with Applications to Homoclinic Orbits in Reversible Systems. Lecture Notes in Mathematics, vol. 1741. Springer-Verlag, Berlin Heidelberg (2000)

  35. Lustri, C.: Nanoptera and stokes curves in the 2-periodic Fermi–Pasta–Ulam—Tsingou equation. Phys. D Nonlinear Phenomena 402, 132239 (2020)

    MathSciNet  Google Scholar 

  36. Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Shock Wave and High Pressure Phenomena. Springer, Berlin (2001)

    Google Scholar 

  37. Ni, X., Rizzo, P., Yang, J., Katri, D., Daraio, C.: Monitoring the hydration of cement using highly nonlinear solitary waves. NDT&E Int. 52, (2012)

  38. Spadoni, A., Daraio, C.: Generation and control of sound bullets with a nonlinear acoustic lens. Proc. Nat. Acad. Sci 107, 7230–7234 (2010)

    Google Scholar 

  39. Stefanov, A., Kevrekidis, P.: On the existence of solitary traveling waves for generalized Hertzian chains. J. Nonlinear Sci. 22, 327–349 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Stefanov, A., Kevrekidis, P.: Traveling waves for monomer chains with precompression. Nonlinearity 26, 539–564 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Tan, Y., Yang, J., Pelinovsky, D.E.: Semi-stability of embedded solitons in the general fifth-order KdV equation. Wave Motion 36, 241–255 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Teschl, G.: Almost everything you always wanted to know about the Toda equation. Jahresber. Deutsch. Math.-Verein. 103, 149–162 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Toda, M.: Theory of Nonlinear Lattices. Springer Series in Solid State Sciences, vol. 20. Springer, Berlin (1978)

    Google Scholar 

  44. Venney, C.R., Zimmer, J.: Travelling lattice waves in a toy model of Lennard–Jones interaction. Q. Appl. Math. 72, 65–84 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Vorotnikov, K., Starosvetsky, Y., Theocharis, G., Kevrekidis, P.: Wave propagation in a strongly nonlinear locally resonant granular crystal. Phys. D Nonlinear Phenomena 365, 27–41 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Xu, H., Kevrekidis, P.G., Stefanov, A.: Traveling waves and their tails in locally resonant granular systems. J. Phys. A 48, 195204 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Yang, J., Sangiorgio, S.N., Borkowski, S.L., Silvestro, C., De Nardo, L., Daraio, C., Ebramzadeh, E.: Site-specific quantification of bone quality using highly nonlinear solitary waves. J. Biomech. Eng. 134, 101001-101001-8 (2012)

  48. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150, 262–268 (1990)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The discussion of the \(\mu \rightarrow \infty \) limit was suggested by a referee and is, in fact almost identical, in content and language, to the referee report. We thank them for this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Douglas Wright.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faver, T.E., Goodman, R.H. & Wright, J.D. Solitary waves in mass-in-mass lattices. Z. Angew. Math. Phys. 71, 197 (2020). https://doi.org/10.1007/s00033-020-01384-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01384-8

Mathematics Subject Classification

Keywords

Navigation