Skip to main content
Log in

Thermodynamics of computation and linear stability limits of superfluid refrigeration of a model computing array

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We analyze the stability of the temperature profile of an array of computing nanodevices refrigerated by flowing superfluid helium, under variations in temperature, computing rate, and barycentric velocity of helium. It turns out that if the variation in dissipated energy per bit with respect to temperature variations is higher than some critical values, proportional to the effective thermal conductivity of the array, then the steady-state temperature profiles become unstable and refrigeration efficiency is lost. Furthermore, a restriction on the maximum rate of variation in the local computation rate is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H.: The thermodynamics of computation: a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)

    Article  Google Scholar 

  2. Leff, H.S., Rex, A.F.: Maxwell’s Demon: Entropy, Information, Computing. Princeton University Press, Princeton (2014)

    Google Scholar 

  3. Zurek, W.H.: Algorithmic randomness and physical entropy. Phys. Rev. A 40(8), 4731 (1989)

    Article  MathSciNet  Google Scholar 

  4. Caulfield, H.J., Qian, L.: Thermodynamics of computation. In: Encyclopedia of complexity and systems science, pp. 9127–9137. Springer (2009)

  5. Iwayama, T., Sueyoshi, M., Watanabe, T.: Linear stability analysis of parallel shear flows for an inviscid generalized two-dimensional fluid system. J. Phys. A Math. Theor. 46(6), 065501 (2013)

    Article  MathSciNet  Google Scholar 

  6. Kim, H., Kwon, S., Padrino, J.C., Funada, T.: Viscous potential flow analysis of capillary instability with heat and mass transfer. J. Phys. A Math. Theor. 41(33), 335205 (2008)

    Article  MathSciNet  Google Scholar 

  7. Hassanien, A.E., Elhoseny, M., Kacprzyk, J.: Quantum Computing: An Environment for Intelligent Large Scale Real Application. Springer, Berlin (2018)

    Book  Google Scholar 

  8. Lanzagorta, M., Uhlmann, J.: Quantum computer science. Synth. Lect. Quantum Comput. 1, 1–124 (2008)

    Article  Google Scholar 

  9. Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y.A., Silvestrini, P.: Quantum Computing in Solid State Systems. Springer, Berlin (2006)

    Book  Google Scholar 

  10. Tan, K.Y., Partanen, M., Lake, R.E., Govenius, J., Masuda, S., Möttönen, M.: Quantum-circuit refrigerator. Nat. Commun. 8, 15189 (2017)

    Article  Google Scholar 

  11. Van Sciver, S.W.: Helium Cryogenics, 2nd edn. Springer, Berlin (2012)

    Book  Google Scholar 

  12. Pilbratt, G., Riedinger, J., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, A., Jewell, C., Metcalfe, L., Ott, S., et al.: Herschel space observatory-an esa facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 518, L1 (2010)

    Article  Google Scholar 

  13. Lebrun, P.: Superfluid helium cryogenics for the large hadron collider project at cern. Cryogenics 34, 1–8 (1994)

    Article  Google Scholar 

  14. Casas, J., Cyvoct, A., Lebrun, P., Marquet, M., Tavian, L., van Weelderen, R.: Design concept and first experimental validation of the superfluid helium system for the large hadron collider (lhc) project at cern. Cryogenics 32, 118–121 (1992)

    Article  Google Scholar 

  15. Jou, D., Sciacca, M., Sellitto, A., Galantucci, L.: Refrigeration bound of heat-producing cylinders by superfluid helium. Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 97 (2019). https://doi.org/10.1478/AAPP.97S1A12

  16. Sciacca, M., Sellitto, A., Galantucci, L., Jou, D.: Refrigeration of an array of cylindrical nanosystems by superfluid helium counterflow. Int. J. Heat Mass Transfer 104, 584–594 (2017)

    Article  Google Scholar 

  17. Jou, D., Galantucci, L., Sciacca, M.: Refrigeration of an array of cylindrical nanosystems by flowing superfluid helium. J. Low Temp. Phys. 187(5–6), 602–610 (2017)

    Article  Google Scholar 

  18. Lambson, B., Carlton, D., Bokor, J.: Exploring the thermodynamic limits of computation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer limit. Phys. Rev. Lett. 107(1), 010604 (2011)

    Article  Google Scholar 

  19. Porod, W., Grondin, R., Ferry, D., Porod, G.: Dissipation in computation. Phys. Rev. Lett. 52(3), 232 (1984)

    Article  Google Scholar 

  20. Landauer, R.: Dissipation in computation. Phys. Rev. Lett. 53(12), 1205 (1984)

    Article  Google Scholar 

  21. Jou, D., Lebon, G., Mongiovì, M.: Second sound, superfluid turbulence, and intermittent effects in liquid helium II. Phys. Rev. B 66, 224509 (9 pages) (2002)

    Article  Google Scholar 

  22. Jou, D., Mongiovì, M.: Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation. Phys. Rev. B 74, 054509 (11 pages) (2006)

    Article  Google Scholar 

  23. Mongiovì, M.: Extended irreversible thermodynamics of liquid helium II. Phys. Rev. B 48, 6276–6283 (1993)

    Article  Google Scholar 

  24. Sciacca, M., Jou, D., Mongiovì, M.S.: Effective thermal conductivity of helium II: from Landau to Gorter–Mellink regimes. Z. Angew. Math. Phys. 66, 1835–1851 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mongiovì, M.S., Jou, D., Sciacca, M.: Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Phys. Rep. 726, 1–71 (2018)

    Article  MathSciNet  Google Scholar 

  26. Sciacca, M., Galantucci, L.: Effective thermal conductivity of superfluid helium: laminar, turbulent and ballistic regimes. Commun. Appl. Ind. Math. 7, 111–129 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Saluto, L., Mongioví, M.S., Jou, D.: Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component. Z. Angew. Math. Phys. 65, 531–548 (2014)

    Article  MathSciNet  Google Scholar 

  28. Saluto, L., Jou, D., Mongiovì, M.: Contribution of the normal component to the thermal resistance of turbulent liquid helium. Z. Angew. Math. Phys. 66(4), 1853–1870 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A 378, 2471–2477 (2014)

    Article  MathSciNet  Google Scholar 

  30. Tatsumi, T., Yoshimura, T.: Stability of the laminar flow in a rectangular duct. J. Fluid Mech. 212, 437–449 (1990)

    Article  Google Scholar 

  31. Jou, D., Sciacca, M.: Quantum Reynolds number for superfluid counterflow turbulence. In: Mongiovì, M.S., Sciacca, M., Triolo, S. (eds.) Bollettino di Matematica Pura e Applicata, vol. VI, pp. 95–103. Aracne editrice, Rome (2013)

    Google Scholar 

  32. Mongiovì, M., Saluto, L.: Effects of heat flux on \(\lambda \)-transition in liquid 4He. Meccanica 49, 2125–2137 (2014)

    Article  MathSciNet  Google Scholar 

  33. Ardizzone, L., Mongiovì, M.S., Saluto, L.: Non-equilibrium thermodynamical description of superfluid transition in liquid helium. J. Non-Equilib. Thermodyn. 42(4), 371–385 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Group of Mathematical Physics (GNFM-INdAM). LG is supported by the Engineering and Physical Sciences Research Councile (EPSRC), Grant EP/R005192/1. D.J. acknowledges the financial support from the Dirección General de Investigación of the Spanish Ministry of Economy and Competitiveness under Grant TEC2015-67462-C2-2-R and of the Direcció General de Recerca of the Generalitat of Catalonia, under Grant 2017 SGR-1018, and to Consolider Program Nanotherm (Grant CSD-2010-00044) of the Spanish ministry of Science and Innovation. The authors would thank the anonymous referee for his help to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Sciacca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciacca, M., Sellitto, A., Galantucci, L. et al. Thermodynamics of computation and linear stability limits of superfluid refrigeration of a model computing array. Z. Angew. Math. Phys. 70, 121 (2019). https://doi.org/10.1007/s00033-019-1162-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1162-7

Keywords

Mathematics Subject Classification

Navigation