Skip to main content
Log in

Large deformations of Timoshenko and Euler beams under distributed load

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, the general equilibrium equations for a geometrically nonlinear version of the Timoshenko beam are derived from the energy functional. The particular case in which the shear and extensional stiffnesses are infinite, which correspond to the inextensible Euler beam model, is studied under a uniformly distributed load. All the global and local minimizers of the variational problem are characterized, and the relative monotonicity and regularity properties are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Euler, L., Carathéodory, C.: Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, vol. 1. Springer, Berlin (1952)

    MATH  Google Scholar 

  2. Bernoulli, D.: The 26th letter to Euler. Corresp. Math. Phys. 2, 1742 (1843)

    Google Scholar 

  3. Bernoulli, J.: Quadratura curvae, e cujus evolutione describitur inflexae laminae curvatura. Die Werke von Jakob Bernoulli 1691, 223–227 (1692)

    Google Scholar 

  4. Antman, S.S., Renardy, M.: Nonlinear problems of elasticity. SIAM Rev. 37(4), 637 (1995)

    Google Scholar 

  5. Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  6. Bisshopp, K.E., Drucker, D.C.: Large deflection of cantilever beams. Q. Appl. Math. 3(3), 272–275 (1945)

    Article  MathSciNet  Google Scholar 

  7. Fertis, D.G.: Nonlinear Structural Engineering. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Ladevèze, P.: Nonlinear Computational Structural Mechanics: New Approaches and Non-incremental Methods of Calculation. Springer, Berlin (2012)

    Google Scholar 

  9. Steigmann, D.J.: Invariants of the stretch tensors and their application to finite elasticity theory. Math. Mech. Solids 7(4), 393–404 (2002)

    Article  MathSciNet  Google Scholar 

  10. Nizette, M., Goriely, A.: Towards a classification of Euler–Kirchhoff filaments. J. Math. Phys. 40(6), 2830–2866 (1999)

    Article  MathSciNet  Google Scholar 

  11. Goriely, A., Nizette, M., Tabor, M.: On the dynamics of elastic strips. J. Nonlinear Sci. 11(1), 3–45 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hamdouni, A., Millet, O.: An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section. Int. J. Non Linear Mech. 41(3), 396–416 (2006)

    Article  MathSciNet  Google Scholar 

  13. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley, New York (2013)

    Book  Google Scholar 

  14. Piccardo, G., D’Annibale, F., Luongo, A.: A perturbation approach to the nonlinear generalized beam theory. In: 4th Canadian Conference on Nonlinear Solid Mechanics (CanCNSM 2013) (2013)

  15. Taig, G., Ranzi, G., D’annibale, F.: An unconstrained dynamic approach for the generalised beam theory. Contin. Mech. Thermodyn. 27(4–5), 879 (2015)

    Article  MathSciNet  Google Scholar 

  16. Piccardo, G., Ranzi, G., Luongo, A.: A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Math. Mech. Solids 19(8), 900–924 (2014)

    Article  MathSciNet  Google Scholar 

  17. Della Corte, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped euler beam (elastica) with distributed load: large deformations. Mathem. Models Methods Appl. Sci. 27, 1–31 (2016)

    MathSciNet  MATH  Google Scholar 

  18. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472, 20150790 (2016)

    Article  Google Scholar 

  19. Bungartz, H.-J., Schäfer, M.: Fluid–Structure Interaction: Modelling, Simulation, Optimisation, vol. 53. Springer, Berlin (2006)

    Book  Google Scholar 

  20. Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid–Structure Interaction: Methods and Applications. Wiley, New York (2013)

    Book  Google Scholar 

  21. Solaria, G., Pagnini, L.C., Piccardo, G.: A numerical algorithm for the aerodynamic identification of structures. J. Wind Eng. Ind. Aerodyn. 69, 719–730 (1997)

    Article  Google Scholar 

  22. Pagnini, L.C.: A numerical approach for the evaluation of wind-induced effects on inclined, slender structural elements. Eur. J. Environ. Civ. Eng. 21, 1–20 (2016)

    Google Scholar 

  23. Liberge, E., Pomarede, M., Hamdouni, A.: Reduced-order modelling by pod-multiphase approach for fluid–structure interaction. Eur. J. Comput. Mech. Revue Eur. Méc. Numér. 19(1–3), 41–52 (2010)

    Article  Google Scholar 

  24. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  Google Scholar 

  25. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MathSciNet  Google Scholar 

  26. Atai, A.A., Steigmann, D.J.: On the nonlinear mechanics of discrete networks. Arch. Appl. Mech. 67(5), 303–319 (1997)

    Article  Google Scholar 

  27. Boutin, C., Giorgio, I., Placidi, L., et al.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  Google Scholar 

  28. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  29. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 53 (2016)

    Article  MathSciNet  Google Scholar 

  30. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  31. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  32. Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a Hencky-type model predict the mechanical behaviour of pantographic lattices? In: Dell’lsola, F. (ed.) Mathematical Modelling in Solid Mechanics, pp. 285–311. Springer, Berlin (2017)

    Chapter  Google Scholar 

  33. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2d models for the description of pantographic fabrics. Z. Angew. Math. Phys. 67(5), 121 (2016)

    Article  MathSciNet  Google Scholar 

  34. Kalpakjian, S., Vijai Sekar, K.S., Schmid, S.R.: Manufacturing Engineering and Technology. Pearson, London (2014)

    Google Scholar 

  35. Misra, A., Placidi, L., Scerrato, D.: A review of presentations and discussions of the workshop computational mechanics of generalized continua and applications to materials with microstructure that was held in Catania 29–31 October 2015. Math. Mech. Solids 9, 1891–1904 (2016)

    MATH  Google Scholar 

  36. Nase, M., Rennert, M., Naumenko, K., Eremeyev, V.A.: Identifying tractionseparation behavior of self-adhesive polymeric films from in situ digital images under t-peeling. J. Mech. Phys. Solids 91, 40–55 (2016)

    Article  MathSciNet  Google Scholar 

  37. Faulkner, M.G., Lipsett, A.W., Tam, V.: On the use of a segmental shooting technique for multiple solutions of planar elastica problems. Comput. Methods Appl. Mech. Eng. 110(3–4), 221–236 (1993)

    Article  Google Scholar 

  38. Raboud, D.W., Faulkner, M.G., Lipsett, A.W.: Multiple three-dimensional equilibrium solutions for cantilever beams loaded by dead tip and uniform distributed loads. Int. J. Non Linear Mech. 31(3), 297–311 (1996)

    Article  Google Scholar 

  39. Timoshenko, S.P.: Lxvi. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41(245), 744–746 (1921)

    Article  Google Scholar 

  40. Timoshenko, S.P.: X. On the transverse vibrations of bars of uniform cross-section. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(253), 125–131 (1922)

    Article  Google Scholar 

  41. Cosserat, E., Cosserat, F., et al.: Théorie des corps déformables. A. Hermann et fils, Paris (1909)

    MATH  Google Scholar 

  42. Altenbach, H., Bîrsan, M., Eremeyev, V.A.: Cosserat-type rods. In: Altenbach, H. (ed.) Generalized Continua from the Theory to Engineering Applications, pp. 179–248. Springer, Berlin (2013)

    Chapter  Google Scholar 

  43. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  Google Scholar 

  44. Balobanov, V., Niiranen, J.: Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. Comput. Methods Appl. Mech. Eng. 339, 137–159 (2018)

    Article  MathSciNet  Google Scholar 

  45. Beirao da Veiga, L., Hughes, T.J.R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A., Speleers, H.: A locking-free model for Reissner–Mindlin plates: analysis and isogeometric implementation via nurbs and triangular nurps. Math. Models Methods Appl. Sci. 25, 1519–1551 (2015)

    Article  MathSciNet  Google Scholar 

  46. Capobianco, G., Eugster, S.R.: Time finite element based Moreau-type integrators. Int. J. Numer. Methods Eng. 114(3), 215–231 (2018)

    Article  MathSciNet  Google Scholar 

  47. Eugster, S.R., Hesch, C., Betsch, P., Glocker, C.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    Article  MathSciNet  Google Scholar 

  48. Eugster, S.R., et al.: Geometric Continuum Mechanics and Induced Beam Theories, vol. 75. Springer, Berlin (2015)

    MATH  Google Scholar 

  49. Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional elastica in large deformation as \(\Gamma \)-limit of a discrete 1D mechanical system. Z. Angew. Math. Phys. 68(2), 42 (2017)

    Article  MathSciNet  Google Scholar 

  50. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43, 1315–1328 (2012)

    Article  Google Scholar 

  51. Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Contin. Mech. Thermodyn. 31, 1–42 (2018)

    MathSciNet  Google Scholar 

  52. Javili, A., Mcbride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Appl. Mech. Rev. 65, 010802 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Della Corte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Corte, A., Battista, A., dell’Isola, F. et al. Large deformations of Timoshenko and Euler beams under distributed load. Z. Angew. Math. Phys. 70, 52 (2019). https://doi.org/10.1007/s00033-019-1098-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1098-y

Mathematics Subject Classification

Keywords

Navigation