Skip to main content
Log in

The fractional diffusion limit of a kinetic model with biochemical pathway

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller–Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdallah, N.B., Mellet, A., Puel, M.: Anomalous diffusion limit for kinetic equations with degenerate collision frequency. Math. Models Methods Appl. Sci. 21(11), 2249–2262 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aceves-Sanchez, P., Schmeiser, C.: Fractional-diffusion-advection limit of a kinetic model. SIAM J. Appl. Math. 48, 2806–2818 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aceves-Sánchez, P., Schmeiser, C.: Fractional diffusion limit of a linear kinetic equation in a bounded domain. Kinet. Relat. Models 10(3), 541–551 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ariel, G., Rabani, A., Benisty, S., Partridge, J.D., Harshey, R.M.: Swarming bacteria migrate by Levy walk. Nat. Commun. 6, 8396 (2015)

    Article  Google Scholar 

  5. Bardos, C., Golse, F., Moyano, Y.: Linear Boltzmann equation and fractional diffusion (2017). Preprint, arXiv:1708.09791

  6. Bardos, C., Santos, R., Sentis, R.: Limit theorems for additive functionals of a Markov chain. Trans. Am. Math. Soc. 284(2), 617–648 (1984)

    Article  MATH  Google Scholar 

  7. Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  8. Bellouquid, A., Nieto, J., Urrutia, L.: About the kinetic description of fractional diffusion equations modeling chemotaxis. Math. Models Methods Appl. Sci. 26, 249–268 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cesbron, L., Mellet, A., Trivisa, K.: Anomalous transport of particles in plasma physics. App. Math. Lett. 25, 2344–2348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolak, Y., Schmeiser, C.: Kinetic models for chemotaxis: hydrodynamic limits and spatio-temporal mechanisms. J. Math. Biol. 51, 595–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erban, R., Othmer, H.: From individual to collective behaviour in bacterial chemotaxis. SIAM J. Appl. Math. 65(2), 361–391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erban, R., Othmer, H.: Taxis equations for amoeboid cells. J. Math. Biol. 54, 847–885 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estrada-Rodriguez, G., Gimperlein, H., Painter, K.J.: Fractional Patlak–Keller–Segel equations for chemotactic superdiffusion. SIAM J. Appl. Math. 78(2), 1155–1173 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frank, M., Sun, W.: Fractional diffusion limits of non-classical transport equations (2017). arXiv:1607.04028

  15. Jara, M., Komorowski, T., Olla, S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, L., Ouyang, Q., Tu, Y.: Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput. Biol. 6, e1000735 (2010)

    Article  MathSciNet  Google Scholar 

  17. Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., Cluzel, P.: From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004)

    Article  Google Scholar 

  18. Matthalus, F., JagodicË, M., Dobnikar, J.: E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. Biophys. J. 97(4), 946–957 (2009)

    Article  Google Scholar 

  19. Mellet, A., Merino-Aceituno, S.: Anomalous energy transport in fpu-\(\beta \) chain. J. Stat. Phys. 160(3), 583–621 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mellet, A., Mouhot, C., Mischler, S.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199, 493–525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Michel, P., Mischler, S., Perthame, B.: General relative entropy inequality: an illustration on growth models. J. Math. Pures Appl. 84, 1235–1260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Othmer, H., Xin, X., Xue, C.: Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int. J. Mol. Sci. 14(5), 9205–9248 (2013)

    Article  Google Scholar 

  23. Perthame, B.: Transport Equations in Biology, Frontiers in Mathematics. Birkhäuser, Basel MR2270822 (2007j:35004) (2007)

  24. Perthame, B., Tang, M., Vauchelet, N.: Derivation of the bacterial run-and-tumble kinetic equation from a model with biological pathway. J. Math. Biol. 73, 1161–1178 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Si, G., Tang, M., Yang, X.: A pathway-based mean-field model for E. coli chemotaxis: mathematical derivation and Keller–Segel limit. Multiscale Model Simul. 12(2), 907–926 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Si, G., Wu, T., Ouyang, Q., Tu, Y.: Pathway-based mean-field model for Escherichia coli chemotaxis. Phys. Rev. Lett. 109, 048101 (2012)

    Article  Google Scholar 

  27. Sun, W., Tang, M.: Macroscopic limits of pathway-based kinetic models for E. coli chemotaxis in large gradient environments. Multiscale Model. Simul. 15(2), 797–826 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tu, Y., Grinstein, G.: How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 94, 208101 (2005)

    Article  Google Scholar 

  29. Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J. Math. Biol. 70, 1–44 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Perthame.

Additional information

B. Perthame: This author has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation program (Grant Agreement No. 740623). W. Sun: This author is partially supported by NSERC Discovery Grant No. R611626. M. Tang: This author is partially supported by NSFC 11301336 and 91330203.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perthame, B., Sun, W. & Tang, M. The fractional diffusion limit of a kinetic model with biochemical pathway. Z. Angew. Math. Phys. 69, 67 (2018). https://doi.org/10.1007/s00033-018-0964-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0964-3

Keywords

Mathematics Subject Classification

Navigation