Skip to main content
Log in

Qualitative analysis of stationary Keller–Segel chemotaxis models with logistic growth

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We study the stationary Keller–Segel chemotaxis models with logistic cellular growth over a one-dimensional region subject to the Neumann boundary condition. We show that nonconstant solutions emerge in the sense of Turing’s instability as the chemotaxis rate \({\chi}\) surpasses a threshold number. By taking the chemotaxis rate as the bifurcation parameter, we carry out bifurcation analysis on the system to obtain the explicit formulas of bifurcation values and small amplitude nonconstant positive solutions. Moreover, we show that solutions stay strictly positive in the continuum of each branch. The stabilities of these steady-state solutions are well studied when the creation and degradation rate of the chemical is assumed to be a linear function. Finally, we investigate the asymptotic behaviors of the monotone steady states. We construct solutions with interesting patterns such as a boundary spike when the chemotaxis rate is large enough and/or the cell motility is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker M.D., Wolanin P.M., Stock J.B.: Signal transduction in bacterial chemotaxis. Bioessays 28, 9–22 (2006)

    Article  Google Scholar 

  2. Biler P.: Local and global solvability of some parabolic system modelling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Biler P., Espejo E., Guerra I.: Blowup in higher dimensional two species chemotactic systems. Commun. Pure Appl. Anal. 12, 89–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chertock A., Kurganov A., Wang X., Wu Y.: On a chemotaxis model with saturated chemotactic flux. Kinet. Relat. Models 5, 51–95 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conca C., Espejo E., Vilches K.: Remarks on the blowup and global existence for a two species chemotactic Keller–Segel system in \({{\mathbb{R}}^2}\). Eur. J. Appl. Math. 22, 553–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Conca C., Espejo E., Vilches K.: Sharp Condition for blow-up and global existence in a two species chemotactic Keller–Segel system in \({{\mathbb{R}}^2}\). Eur. J. Appl. Math. 24, 297–313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall M.G., Rabinowitz P.H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dormann D., Weijer C.: Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16, 367–373 (2006)

    Article  Google Scholar 

  11. Ei S.I., Izuhara H., Mimura M.: Spatio-temporal oscillations in the Keller–Segel system with logistic growth. Phys. D 277, 1–21 (2014)

    Article  MathSciNet  Google Scholar 

  12. Henry M., Hilhorst D., Schatzle R.: Convergence to a viscosity solution for an advection–reaction–diffusion equation arising from a chemotaxis-growth model. Hiroshima Math. J. 29, 591–630 (1999)

    MathSciNet  MATH  Google Scholar 

  13. Herrero M.A., Velazquez J.J.L.: Chemotactic collapse for the Keller–Segel model. J. Math. Biol. 35, 583–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillen T., Painter K.J.: A user’s guidence to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Horstmann D.: From 1970 until now: the Keller–Segel model in Chemotaxis and its consequences I. Jahresber DMV 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Horstmann D.: From 1970 until now: the Keller–Segel model in Chemotaxis and its consequences II. Jahresber DMV 106, 51–69 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Horstmann D.: Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blowup results for multispecies chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21, 231–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horstmann D., Winkler M.: Boundedness vs. blow-up in a chemotaxisi system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin L., Wang Q., Zhang Z.: Pattern formation in Keller–Segel chemotaxis models with logistic growth. Int. J. Bifurc. Chaos 26, 1650033-1–1650033-15 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kato T.: Functional Analysis. Classics in Mathematics. Springer, New York (1996)

    Google Scholar 

  21. Keller E.F., Segel L.A.: Inition of slime mold aggregation view as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  22. Keller E.F., Segel L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)

    Article  MATH  Google Scholar 

  23. Keller E.F., Segel L.A.: Traveling bands of chemotactic bacteria: a theretical analysis. J. Theor. Biol. 30, 235–248 (1971)

    Article  MATH  Google Scholar 

  24. Kolokolnikov T., Wei J., Alcolado A.: Basic mechanisms driving complex spike dynamics in a chemotaxis model with logistic growth. SIAM J. Appl. Math. 74, 1375–1396 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuto K., Osaki K., Sakurai T., Tsujikawa T.: Spatial pattern formation in a chemotaxis–diffusion–growth model. Phys. D 241, 1629–1639 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuto K., Tsujikawa T.: Limiting structure of steady-states to the Lotka–Volterra competition model with large diffusion and advection. J. Differ. Equ. 258, 1801–1858 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin C.-S., Ni W.-M., Takagi I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lou Y.: On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ. 223, 400–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lou, Y.: Some challenging mathematical problems in evolution of dispersal and population dynamics, Tutorials in mathematical biosciences. IV, 171205, Lecture Notes in Math., 1922, Springer, Berlin (2008)

  30. Ma M., Ou C., Wang Z.-A.: Stationary solutions of a volume filling chemotaxis model with logistic growth. SIAM J. Appl. Math. 72, 740–766 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mimura M., Tsujikawab T.: Aggregating pattern dynamics in a chemotaxis model including growth. Phys. A 230, 499–543 (1996)

    Article  Google Scholar 

  32. Nakaguchi E., Osaki K.: Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation. Nonlinear Anal. 74, 286–297 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nanjundiah V.: Chemotaxis, signal relaying and aggregation morphology. J. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  34. Ni W.-M.: Diffusion, cross-diffusion, and their spike layer steady states. Not. Am. Math. Soc. 15, 9–18 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Ni W.-M., Takagi I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni W.-M., Takagi I.: Location of the peaks of least energy solutions to a semilinear Neumann problem. Duke Math. J. 72, 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Osaki K., Tsujikawa T., Yagi A., Mimura M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Osaki K., Yagi A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkc. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Painter K.J., Hillen T.: Spatio-temporal chaos in a chemotaxis model. Phys. D 240, 363–375 (2011)

    Article  MATH  Google Scholar 

  40. Pejsachowicz J., Rabier P.J.: Degree theory for C 1 Fredholm mappings of index 0. J. Anal. Math. 76, 289–319 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shi J., Wang X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Simonett G.: Center manifolds for quasilinear reaction–diffusion systems. Differ. Integral Equ. 8, 753–796 (1995)

    MathSciNet  MATH  Google Scholar 

  43. Tello J.I., Winkler M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tello J.I., Winkler M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25, 1413–1425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tello J.I., Winkler M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68, 1607–1626 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tsujikawa T., Kuto K., Miyamoto Y., Izuhara H.: Stationary solutions for some shadow system of the Keller–Segel model with logistic growth. Discrete Contin. Dyn. Syst. Ser. S 8, 1023–1034 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang Q.: Boundary spikes of a Keller–Segel chemotaxis system with saturated logarithmic sensitivity. Discrete Contin. Dyn. Syst Ser. B 20, 1231–1250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang Q.: Global solutions of a Keller Segel system with saturated logarithmic sensitivity function. Commun. Pure Appl. Anal. 14, 383–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang Q., Gai C., Yan J.: Qualitative analysis of a Lotka–Volterra competition system with advection. Discrete Contin. Dyn. Syst. 35, 1239–1284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Q., Yang, J., Zhang, L.: Time periodic and stable patterns of a two–competing–species Keller–Segel chemotaxis model: effect of cellular growth, preprint arXiv:1505.06463

  51. Wang Q., Zhang L., Yang J., Hu J.: Global existence and steady states of a two competing species Keller–Segel chemotaxis model. Kinet. Relat. Models 8, 777–807 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang X.: Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal. 31, 535–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang X., Wu Y.: Qualitative analysis on a chemotactic diffusion model for two species competing for a limited resource. Q. Appl. Math. 60, 505–531 (2002)

    MathSciNet  MATH  Google Scholar 

  54. Wang X., Xu Q.: Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2012)

    Article  MATH  Google Scholar 

  55. Wang Z.-A.: Mathematics of traveling waves in chemotaxis. Discrete Contin. Dyn. Syst Ser. B. 18, 601–641 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  56. Winkler M.: Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Winkler M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

QW is partially supported by NSF-China (Grant No. 11501460) and the Project (No. 15ZA0382) from Department of Education, Sichuan China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yan, J. & Gai, C. Qualitative analysis of stationary Keller–Segel chemotaxis models with logistic growth. Z. Angew. Math. Phys. 67, 51 (2016). https://doi.org/10.1007/s00033-016-0648-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0648-9

Mathematics Subject Classification

Keywords

Navigation