Skip to main content
Log in

Decay of the compressible magnetohydrodynamic equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the time decay rates of the solution to the Cauchy problem for the compressible heat-conducting magnetohydrodynamic equations via a refined pure energy method. In particular, the optimal decay rates of the higher-order spatial derivatives of the solution are obtained. The \({\dot{H}^{-s}(0\leq s<\frac{3}{2})}\) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chae D., Schonbek M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255, 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen Q., Tan Z.: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations. Nonlinear Anal. 72, 4438–4451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G.Q., Wang D.: Global solution of nonlinear magnetohydrodynamics with large initial data. J. Differ. Equ. 182, 344–376 (2002)

    Article  MATH  Google Scholar 

  4. Chen G.Q., Wang D.: Existence and continuous dependence of large solutions for the magnetohydrodynamic equations. Z. Angew. Math. Phys. 54, 608–632 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deckelnick K.: Decay estimates for the compressible Navier–Stokes equations in unbounded domains. Math. Z. 209, 115–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deckelnick K.: L 2-decay for the compressible Navier–Stokes equations in unbounded domains. Commun. Partial Differ. Equ. 18, 1445–1476 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan R.J., Ukai S., Yang T., Zhao H.J.: Optimal L pL q convergence rate for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–223 (2007)

    Article  MATH  Google Scholar 

  8. Duan R.J., Ukai S., Yang T., Zhao H.J.: Optimal convergence rate for compressible Navier–Stokes equations with potential force. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ducomet B., Feireisl E.: The equations of magnetohydrodynamics: on the interaction between and radiation in the evolution of gaseous stars. Commun. Math. Phys. 226, 595–629 (2006)

    Article  MathSciNet  Google Scholar 

  10. Fan J.S., Jiang S., Nakamura G.: Vanishing shear viscosity limit in the magnetohydrodynamic equations. Commun. Math. Phys. 270, 691–708 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fan J.S., Yu W.H.: Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal. Real World Appl. 10, 392–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freistühler H., Szmolyan P.: Existence and bifurcation of viscous profile hydrodynamic shock waves. SIAM J. Math. Anal. 26, 112–128 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gao Z.S., Tan Z., Wu G.C.: Global existence and convergence rates of smooth solutions for the 3-D compressible magnetohydrodynamic equations without heat conductivity. Acta Math. Sci. Ser. B 34, 93–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo Y., Wang Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    Article  MATH  Google Scholar 

  15. Hoff D., Tsyganov E.: Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z. Angew. Math. Phys. 56, 791–804 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu X.P., Wang D.H.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju N.: Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R 3. Commun. Math. Phys. 200, 621–659 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kobayashi T., Shibata Y.: Remark on the rate of decay of solutions to linearized compressible Navier–Stokes equations. Pac. J. Math. 207, 199–234 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li F.C., Yu H.J.: Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. R. Soc. Edinb. Sect. A 141, 109–126 (2011)

    Article  MATH  Google Scholar 

  21. Liu T.P., Wang W.K.: The pointwise estimates of diffusion waves for Navier–Stokes equations in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)

    Article  MATH  Google Scholar 

  22. Matsumura A., Nishida T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  24. Ponce G.: Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal. 9, 339–418 (1985)

    Article  MathSciNet  Google Scholar 

  25. Schonbek M.E.: L 2 decay of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 88, 209–222 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schonbek M.E.: Large time behaviour of solutions of the Navier–Stokes equations. Commun. Partial Differ. Equ. 11, 733–763 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Tan Z., Wang Y.J.: Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with coulomb force. Nonlinear Anal. 71, 5866–5884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tan Z., Wang H.Q.: Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal. Real World Appl. 14, 188–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Volpert A.I., Khudiaev S.I.: On the Cauchy problem for composite systems of nonlinear equations. Math. USSR-Sb. 87, 504–528 (1972)

    Google Scholar 

  31. Wang Y.J.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    Article  MATH  Google Scholar 

  32. Wang Y.J., Tan Z.: Optimal decay rates for the compressible fluid models of Korteweg type. J. Math. Anal. Appl. 379, 256–271 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang Y.J., Tan Z.: Global existence and optimal decay rate for the strong solutions in H 2 to the compressible Navier–Stokes equations. Appl. Math. Lett. 24, 1778–1784 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, R., Li, Y. & Yao, Za. Decay of the compressible magnetohydrodynamic equations. Z. Angew. Math. Phys. 66, 2499–2524 (2015). https://doi.org/10.1007/s00033-015-0536-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0536-8

Mathematics Subject Classification

Keywords

Navigation