Skip to main content
Log in

Irregular locus of the commuting variety of reductive symmetric lie algebras and rigid pairs

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The aim of this paper is to describe the irregular locus of the commuting variety of a reductive symmetric Lie algebra. More precisely, we want to enlighten a remark of V. L. Popov. In one of his papers, the irregular locus of the commuting variety of any reductive Lie algebra is described and its codimension is computed. This provides a bound for the codimension of the singular locus of this commuting variety. V. L. Popov also suggests that his arguments and methods are suitable for obtaining analogous results in the symmetric setting. We show that some difficulties arise in this case and we obtain some results on the irregular locus of the component of maximal dimension of the “symmetric commuting variety”. As a by-product, we study some pairs of commuting elements specific to the symmetric case, that we call rigid pairs. These pairs allow us to find all symmetric Lie algebras whose commuting variety is reducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Л. B. Aнтонян, О клaссuфuкацuu оƌнороƌных элеменmов Z 2-ƨраƌyuрованных nолуросmых алƨебр Лu, Becтн. Mоск. унив., cep. I, мaт., мeх. 37 (1982), 29–34. Engl. transl.: L. V. Antonyan, On the classification of homogeneous elements of \( {{\mathbb {Z}}_2} \) -graded semisimple Lie algebras, Mosc. Univ. Math. Bull. 37 (1982), no. 2, 36–43.

  2. S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34.

    MathSciNet  Google Scholar 

  3. P. Bala, R. W. Carter, Classes of unipotent elements in simple algebraic groups II, Math. Proc. Cambridge Philos. Soc. 80 (1976), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Borho, Über Schichten halbeinfacher Lie-Algebren, Invent. Math. 65 (1981), 283–317.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Bulois, Composantes irréductibles de la variété commutante nilpotente d’une algèbre de Lie symétrique semi-simple, Ann. Inst. Fourier 59 (2009), 37–80.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bulois, Sheets of symmetric Lie algebras and Slodowy slices, J. Lie Theory 21 (2011), 1–54.

    MathSciNet  MATH  Google Scholar 

  7. D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold, New York, 1993.

    MATH  Google Scholar 

  8. D. Z. Djokovic, Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers, J. Algebra 112 (1988), 503–524.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Z. Djokovic, Classification of nilpotent elements in simple real Lie algebras E6(6) and E6(26) and description of their centralizers, J. Algebra 116 (1988), 196–207.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. G. Elashvili, D. Panyushev, Towards a classification of principal nilpotent pairs, [Gi, Appendix].

  11. A. G. Elashvili, D. Panyushev, A classification of the principal nilpotent pairs in simple Lie algebras and related problems, J. London Math. Soc. (2) 63 (2001), 299–318.

    Article  MathSciNet  MATH  Google Scholar 

  12. The GAP Group, GAP—Groups, Algorithms, and Programming, version 4:4:12, 2008, http://www.gap-system.org .

  13. V. Ginzburg, Principal nilpotent pairs in a semisimple Lie algebra I, Invent. Math. 140 (2000), 511–561.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Goodman, N. R. Wallach, An algebraic group approach to compact symmetric spaces, http://www.math.rutgers.edu/~goodman/pub/symspace.pdf .

  15. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russia transl.: P. Xapтсхоpнб, Aлƨебраuческая ƨeoмеmрuя, Mиp, M., 1981.

    Google Scholar 

  16. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, New York, 1978.

    Google Scholar 

  17. S. G. Jackson, A. G. Noel, Prehomogeneous spaces associated with nilpotent orbits, http://www.math.umb.edu/~anoel/publications/tables/ .

  18. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Lusztig, N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. (2) 19 (1979), 41–52.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Ohta, The singularities of the closure of nilpotent orbits in certain symmetric pairs, Tohoku Math. J. 38 (1986), 441–468.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Ohta, The closure of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J. 43 (1991), 161–211.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. I. Panyushev, The Jacobian modules of a representation of a Lie algebra and geometry of commuting varieties, Compositio Math. 94 (1994), 181–199.

    MathSciNet  MATH  Google Scholar 

  23. D. I. Panyushev, Nilpotent pairs in semisimple Lie algebras and their characteristics, Internat. Math. Res. Notices 2000 , 1–21.

  24. D. I. Panyushev, Nilpotent pairs, dual pairs and sheets, J. Algebra 240 (2001), 635–664.

    Article  MathSciNet  MATH  Google Scholar 

  25. Д. И. Панюшев, О неnpuвоƋuмocmu коммymamopных мноƨообpa3uŭ, свя3анных с uнвопюцuямu npocmых апƨебp Лu, Φункц. aнaлиз и его пpилож. 38 (2004), no. 1, 47‐55, 95. Engl. transl.: D. I. Panyushev, On the irreducibility of commuting varieties associated with involutions of simple Lie algebras, Func. Anal. Appl. 38 (2004), 38–44.

    Google Scholar 

  26. D. I. Panyushev, O. Yakimova, Symmetric pairs and associated commuting varieties, Math. Proc. Cambridge Philos. Soc. 143 (2007), 307–321.

    Article  MathSciNet  MATH  Google Scholar 

  27. V. L. Popov, Irregular and singular loci of commuting varieties, Transform. Groups 13 (2008), 819–837.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. L. Popov, E. A. Tevelev, Self-dual projective algebraic varieties associated with symmetric spaces, in: V. Popov, ed., Algebraic Transformation Groups and Algebraic Varieties, Encyclopedia of Mathematical Sciences, Vol. 132, Series Invariant Theory and Transformation Groups, Vol. III, Springer, Berlin, 2004, pp. 131–167.

    Google Scholar 

  29. A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154 (2003), 653–683.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. W. Richardson, Commuting varieties of semisimple Lie algebras and algebraic groups, Compositio Math. 38 (1979), 311–327.

    MathSciNet  MATH  Google Scholar 

  31. H. Sabourin, R. W. T. Yu, On the irreducibility of the commuting variety of the symmetric pair \( \left( {{\mathfrak{s}}{{\mathfrak{o}}_{p + 2}},{\mathfrak{s}}{{\mathfrak{o}}_p} \times {\mathfrak{s}}{{\mathfrak{o}}_2}} \right) \), J. Lie Theory 16 (2006), 57–65.

    MathSciNet  MATH  Google Scholar 

  32. R. Steinberg, Torsion in reductive groups, Adv. Math. 15 (1995), 63–92.

    Article  MathSciNet  Google Scholar 

  33. P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer, Berlin, 2005.

    MATH  Google Scholar 

  34. R. W. T. Yu, Centralizers of distinguished nilpotent pairs and related problems, J. Algebra 252 (2002), 167–194.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bulois.

Additional information

Supported by University of Angers and University of Brest

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulois, M. Irregular locus of the commuting variety of reductive symmetric lie algebras and rigid pairs. Transformation Groups 16, 1027–1061 (2011). https://doi.org/10.1007/s00031-011-9162-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9162-5

Keywords

Navigation