Skip to main content
Log in

The quantum differential equation of the Hilbert scheme of points in the plane

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We discuss here basic properties of the quantum differential equation of the Hilbert scheme of points in the plane. Our emphasis is on intertwining operators (which shift equivariant parameters) and their applications. In particular, we obtain an exact solution to the connection problem from the Donaldson-Thomas point q = 0 to the Gromov-Witten point q = -1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. R. Bezrukavnikov, A. Okounkov, Monodromy of the QDE for the Hilbert scheme, in preparation.

  2. J. Bryan, R. Pandharipande, The local Gromov-Witten theory of curves, math.AG/0411037.

  3. M. S. P. Eastham, The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem, Clarendon Press, Oxford, 1989.

    MATH  Google Scholar 

  4. M. Haiman, Combinatorics, symmetric functions and Hilbert schemes, in: Current Developments in Mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111.

  5. H. Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, arXiv:0903.1463.

  6. N. Levinson, The asymptotic nature of solutions of linear systems of differential equations, Duke Math. J. 15 (1948), 111–126.

    Article  MATH  MathSciNet  Google Scholar 

  7. W.-P. Li, Z. Qin, W. Wang, The cohomology rings of Hilbert schemes via Jack polynomials, in: Algebraic Structures and Moduli Spaces, CRM Proceedings and Lecture Notes, Vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 249–258.

  8. I. Macdonald, Symmetric Functions and Hall Polynomials, The Clarendon Press, Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  9. D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory, I and II, math.AG/0312059, math.AG/0406092.

  10. D. Maulik, A. Oblomkov, A. Okounkov, R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, arXiv:0809.3976.

  11. A. Okounkov, R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, arXiv:math/0411210.

  12. A. Okounkov, R. Pandharipande, The local Donaldson-Thomas theory of curves, arXiv:math/0512573.

  13. R. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), no. 1, 76–115.

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Vasserot, Sur l'anneau de cohomologie du schma de Hilbert de C2, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 7–12.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Okounkov.

Additional information

Dedicated to Vladimir Morozov on the 100th anniversary of his birth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okounkov, A., Pandharipande, R. The quantum differential equation of the Hilbert scheme of points in the plane. Transformation Groups 15, 965–982 (2010). https://doi.org/10.1007/s00031-010-9116-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9116-3

Keywords