Skip to main content
Log in

Uniqueness of \( \mathbb{C}^{ * } \)- and \( \mathbb{C}_{{\text{ + }}} \)-actions on Gizatullin Surfaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A Gizatullin surface is a normal affine surface V over \( \mathbb{C} \), which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of \( \mathbb{C}^{ * } \)-actions and \( \mathbb{A}^{{\text{1}}} \)-fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with \( \mathbb{C}_{{\text{ + }}} \)-actions on V considered up to a “speed change”.

Non-Gizatullin surfaces are known to admit at most one \( \mathbb{A}^{1} \)-fibration VS up to an isomorphism of the base S. Moreover, an effective \( \mathbb{C}^{ * } \)-action on them, if it does exist, is unique up to conjugation and inversion t \( \mapsto \) t −1 of \( \mathbb{C}^{ * } \). Obviously, uniqueness of \( \mathbb{C}^{ * } \)-actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of \( \mathbb{C}^{ * } \)-actions and \( \mathbb{A}^{{\text{1}}} \)-fibrations, see, e.g., [FKZ1].

In the present paper we obtain a criterion as to when \( \mathbb{A}^{{\text{1}}} \)-fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base \( S \cong \mathbb{A}^{{\text{1}}} \). We exhibit as well large subclasses of Gizatullin \( \mathbb{C}^{ * } \)-surfaces for which a \( \mathbb{C}^{ * } \)-action is essentially unique and for which there are at most two conjugacy classes of \( \mathbb{A}^{{\text{1}}} \)-fibrations over \( \mathbb{A}^{{\text{1}}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bandman, L. Makar-Limanov, Affine surfaces with AK(S) = \( \mathbb{C} \), Michigan Math. J. 49 (2001), 567–582.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bertin, Pinceaux de droites et automorphismes des surfaces affines, J. Reine Angew. Math. 341 (1983), 32–53.

    MATH  MathSciNet  Google Scholar 

  3. P. Cassou-Noguès, P. Russell, Birational morphisms \( \mathbb{C}^{{\text{2}}} \to \mathbb{C}^{{\text{2}}} \) and affine ruled surfaces, in: Affine Algebraic Geometry, in Honor of Professor M. Miyanishi, Osaka University Press, Osaka, 2007, pp. 57–106.

  4. D. Daigle, On locally nilpotent derivations of k [X 1, X 2, Y] / (φ(Y) − X 1 X 2), J. Pure Appl. Algebra 181 (2003), 181–208.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Daigle, P. Russell, On log \( \mathbb{Q}\) -homology planes and weighted projective planes, Canad. J. Math. 56 (2004), 1145–1189.

    MATH  MathSciNet  Google Scholar 

  6. М. Х. Гизатуллин, В. И. Данилов, Авmоморфuзмы аффuнных nоверхносmеŭ, I, Изв. AH CCCP, cep. мат. 39 (1975), 523–565; II, Изв. AH CCCP, cep. мат. 41 (1977), 54–103. Engl. transl.: M. H. Gizatullin, V. I. Danilov, Automorphisms of affine surfaces, I, Math. USSR-Izv. 9 (1975), 493–534; II, ibid. 11 (1977), 51–98.

  7. A. Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004), 289–308.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Flenner, S. Kaliman, M. Zaidenberg, Birational transformations of weighted graphs, in: Affine Algebraic Geometry, in Honor of Professor M. Miyanishi, Osaka University Press, Osaka, 2007, pp. 107–147.

    Google Scholar 

  9. H. Flenner, S. Kaliman, M. Zaidenberg, Completions of \( \mathbb{C}^{ * } \) -surfaces, in: Affine Algebraic Geometry, in Honor of Professor M. Miyanishi, Osaka University Press, Osaka, 2007, pp. 149–201.

    Google Scholar 

  10. H. Flenner, S. Kaliman, M. Zaidenberg, Smooth affine surfaces with nonunique \( \mathbb{C}^{ * } \)-actions, in preparation.

  11. H. Flenner, M. Zaidenberg, Normal affine surfaces with \( \mathbb{C}^{ * } \)-actions, Osaka J. Math. 40, 2003, 981–1009.

    MATH  MathSciNet  Google Scholar 

  12. H. Flenner, M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a \( \mathbb{C}^{ * } \)-action, Osaka J. Math. 42 (2005), 931–974.

    MATH  MathSciNet  Google Scholar 

  13. H. Flenner, M. Zaidenberg, On the uniqueness of \( \mathbb{C}^{ * } \)-actions on affine surfaces, in: Affine Algebraic Geometry, Contemporary Mathematics, Vol. 369, Amer. Math. Soc., Providence, RI, 2005, pp. 97–111.

  14. М. Х. Гизатуллин, Аффuнные nоверхносmu, квазuо∂норо∂ные оmносumельно алƨебраuческоŭ ƨруnnы, Изв. АH СССР, сер. мат. 35 (1971), 738–753; Квазuо∂норо∂ные аффuнные nоверхносmu, Изв. АH СССР, сер. мат. 35 (1971), 1047–1071. Engl. transl.: M. H. Gizatullin, Affine surfaces that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. 5 (1971), 754–769; Quasihomogeneous affine surfaces, ibid. 5 (1971), 1057–1081.

  15. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алƨебраuческая ƨеомеmрuя, Мир, М., 1981.

  16. F. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Kaliman, M. Zaidenberg, Families of affine planes: The existence of a cylinder, Michigan Math. J. 49 (2001), 353–367.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Makar-Limanov, Locally nilpotent derivations, a new ring invariant and applications, 60 pp., available at: http://www.math.wayne.edu/~lml/ .

  19. L. Makar-Limanov, Locally nilpotent derivations on the surface xy = p(z), in: Proceedings of the Third International Algebra Conference (Tainan, 2002), Kluwer Academic, Dordrecht, 2003, pp. 215–219.

    Google Scholar 

  20. M. Miyanishi, Open Algebraic Surfaces, CRM Monograph Series, Vol. 12, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  21. R. Rentschler, Opérations du groupe additif sur le plane affine, C. R. Acad. Sci. 267 (1968), 384–387.

    MATH  MathSciNet  Google Scholar 

  22. P. Russell, Some formal aspects of the theorem of Mumford-Ramanujam, in: Algebra, Arithmetic and Geometry, Parts I, II (Mumbai, 2000), Tata Inst. Fund. Res. Stud. Math., Vol. 16, Tata Inst. Fund. Res. Bombay, 2002, pp. 557–584.

  23. М. Заӥденберг, Экзоmuческuе алƨебраuческuе сmрукmуры на аффuнных иросmрансmвах, Алгебра и анализ 11 (2000), 3–73. Engl. transl: M. Zaidenberg, Exotic algebraic structures on affine spaces, St. Petersb. Math. J. 11 (2000), 703–760.

  24. O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. 78 (1954), 155–168.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Flenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flenner, H., Kaliman, S. & Zaidenberg, M. Uniqueness of \( \mathbb{C}^{ * } \)- and \( \mathbb{C}_{{\text{ + }}} \)-actions on Gizatullin Surfaces. Transformation Groups 13, 305–354 (2008). https://doi.org/10.1007/s00031-008-9014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-008-9014-0

Keywords

Navigation