Skip to main content
Log in

The asymptotic behaviors of normalized ground states for nonlinear Schrödinger equations

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the relation between the least energy levels and between the minimizers of the following minimization problems

$$\begin{aligned} E_\sigma (\rho )=\inf \Big \{\frac{1}{2}\int _{\mathbb {R}^N} |\nabla w|^2 -\frac{1}{2\sigma +2}\int _{\mathbb {R}^N}|w|^{2\sigma +2} \Big | \int _{\mathbb {R}^N} w^2=\rho \Big \} \end{aligned}$$

and

$$\begin{aligned} Z(\rho ) =\inf \Big \{\frac{1}{2}\int _{\mathbb {R}^N} |\nabla w|^2 -\frac{1}{2}\int _{\mathbb {R}^N}w^{2}\log w^2 \Big | \int _{\mathbb {R}^N} w^2=\rho \Big \}. \end{aligned}$$

We show that as \(\sigma \rightarrow 0^+\), the minimizers for \(E_\sigma (\rho )\), after rescaling, converge to the minimizers of \(Z(\rho )\). Besides, we also give estimates for \(E_\sigma (\rho )\) and the corresponding Lagrange multiplier when \(\sigma \) is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. BiaŁynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Cl 3(23), 461–466 (1975)

    MathSciNet  Google Scholar 

  4. BiaŁynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100(12), 62–93 (1976)

    Article  MathSciNet  Google Scholar 

  5. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  MATH  Google Scholar 

  6. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16(2), 1350032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frantzeskakis, D.J.: Dark solitons in atomic Bose-Einstein condensates: from theory to experiments. J. Phys. A 43(21), 213001, 68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzalez, R. (eds.): Springer-Verlag, Berlin (2008)

    Google Scholar 

  10. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u + u^{p} = 0\) in \({\mathbb{R} }^n\). Arch. Ration. Mech. Anal. 105(3), 243–266 (1989)

    Article  MATH  Google Scholar 

  11. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lieb, E.H., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence (2001)

  13. Shuai, W.: Multiple solutions for logarithmic Schrödinger equations. Nonlinearity 32(6), 2201–2225 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Timmermans, E.: Phase separation of Bose-Einstein condensates. Phys. Rev. Lett. 81(26), 5718–5721 (1998)

    Article  Google Scholar 

  16. Troy, W.C.: Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation. Arch. Ration. Mech. Anal. 222, 1581–1600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger equations, Calc. Var. Partial Differential Equations 56 (2017)

  18. Tang, Z., Zhang, C., Zhang, L., Zhou, L.: Normalized multibump solutions to nonlinear Schrödinger equations with steep potential well. Nonlinearity 35(8), 4624–4658 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z.-Q., Zhang, C.: Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch. Ration. Mech. Anal. 231, 45–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, C., Zhang, X.: Normalized multi-bump solutions of nonlinear Schrödinger equations via variational approach. Calc. Var. Partial Differ. Equ. 61(2), 57, 20 (2022)

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Number: 12001044).

Author information

Authors and Affiliations

Authors

Contributions

LZ wrote the main manuscript text and CZ revised the introduction and theorem 3.1. All authors reviewed the manuscript.

Corresponding author

Correspondence to Luyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, C. The asymptotic behaviors of normalized ground states for nonlinear Schrödinger equations. Nonlinear Differ. Equ. Appl. 30, 44 (2023). https://doi.org/10.1007/s00030-023-00853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00853-z

Keywords

Mathematics Subject Classification

Navigation