Skip to main content
Log in

Intermittency and stochastic pseudo-differential equation with spatially inhomogeneous white noise

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we study the intermittent property for the following nonlinear stochastic partial differential equation (SPDE in the sequel) in (1+1)-dimension

$$\begin{aligned} \left( \frac{\partial }{\partial t}+q(x,D_x)\right) u(t,x)= g(u(t,x))\frac{\partial ^2 w_\rho }{\partial t\partial x}(t,x),\quad t>0 \quad \mathrm{and} \quad x\in {\mathbb {R}}, \end{aligned}$$

with \(q(x,D_x)\) is a pseudo-differential operator which generates a stable-like process. The forcing noise denoted by \(\frac{\partial ^2 w_\rho }{\partial t\partial x}(t,x)\) is a spatially inhomogeneous white noise. Under some mild assumptions on the catalytic measure of the inhomogeneous Brownian sheet \(w_\rho (t,x)\), we prove that the solution is weakly full intermittent based on the moment estimates of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bass, R.F.: Uniqueness in law for pure jump type Markov processes. Probab. Theory Relat. Fields 79, 271–287 (1988)

    Article  Google Scholar 

  2. Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman–Kac formula and intermittency. J. Stat. Phys. 78(5/6), 1377–1401 (1995)

    Article  Google Scholar 

  3. Dawson, D.A., Fleischmann, K.: A super-Brownian motion with a single point catalyst. Stoch. Prosess. Appl. 49(1), 3–40 (1994)

    Article  MathSciNet  Google Scholar 

  4. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(21), 548–568 (2009)

    Article  MathSciNet  Google Scholar 

  5. Foondun, M., Joseph, M.: Remarks on non-linear noise excitability of some stochastic equations. Stoch. Process. Appl. 124(10), 3429–3440 (2014)

    Article  MathSciNet  Google Scholar 

  6. Foondun, M., Liu, W., Omaba, M.: Moment bounds for a class of fractional stochastic heat equation. Ann. Probab. 45(4), 2131–2153 (2017)

    Article  MathSciNet  Google Scholar 

  7. Foondun, M., Mijena, J.B., Nane, E.: Non-linear noise excitation for some space-time fractional stochastic equations in bounded domains. Fract. Calc. Appl. Anal. 19(6), 1527–1553 (2016)

    Article  MathSciNet  Google Scholar 

  8. Foondun, M., Nane, E.: Asymptotic properties of some space-time fractional stochastic equations. Math. Z. 287, 493–519 (2017)

    Article  MathSciNet  Google Scholar 

  9. Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Holder continuity and intermittency. Electron. J. Probab. 20(55), 1–50 (2015)

    MATH  Google Scholar 

  11. Jacob, N., Leopold, H.G.: Pseudo differential operators with variable order of differentiation generating Feller semigroups. Integral Equ. Oper. Theory 17, 544–553 (1993)

    Article  MathSciNet  Google Scholar 

  12. Jacob, N., Potrykus, A., Wu, J.-L.: Solving a non-linear stochastic pseudo-differential equation of Burgers type. Stoch. Process. Appl. 120, 2447–2467 (2010)

    Article  MathSciNet  Google Scholar 

  13. Jiang, Y., Wei, T., Zhou, X.: Stochastic generalized Burgers equations driven by fractional noises. J. Differ. Equ. 252, 1934–1961 (2012)

    Article  MathSciNet  Google Scholar 

  14. Khoshnevisan, D.: Analysis of stochastic partial differential equations, volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, D. C; by the American Mathematical Society, Providence, RI (2014)

  15. Khoshnevisan, D., Kim, K.: Non-linear excitation of excitation of intermittent stochastic PDEs and the topology of LCA groups. Ann. Probab. 43(4), 1944–1991 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kikuchi, K., Negoro, A.: On Markov process generated by pseudo-differential operator of variable order. Osaka J. Math. 34, 319–335 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Kolokoltsov, V.: Symmetric stable laws and stable-like jump-diffusions. Proc. Lond. Math. Soc. 80, 725–768 (2000)

    Article  MathSciNet  Google Scholar 

  18. Komatsu, T.: Markov processes associted with certain integro-differential operators. Osaka J. Math. 10, 271–303 (1973)

    MathSciNet  MATH  Google Scholar 

  19. Komatsu, T.: Continuity estimates for solutions of parabolic equations associated with jump type Dirichlet forms. Osaka J. Math. 25, 697–728 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Komatsu, T.: Uniform estimates of fundamental solutions associted with non-local Dirichlet forms. Osaka J. Math. 32, 833–860 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Konno, N., Shiga, T.: Stochastic partial differential equations for some measure-valued diffusion. Probab. Theory Relat. Fields 79, 201–225 (1988)

    Article  MathSciNet  Google Scholar 

  22. Liu, J., Yan, L.: On a nonlinear stochastic pseudo-differential equation with fractional noise. Stoch. Dyn. 18(1), 1850002 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Tudor, Ciprian A.: Generalized Anderson model with time-space multiplicative fractional noise. Results Math. 72(4), 1967–1989 (2017)

    Article  MathSciNet  Google Scholar 

  24. Negoro, A.: Stable-like processes: construction of the transition density and the behavior of sample paths near \(t=0\). Osaka J. Math. 31(1), 189–214 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Neuman, E.: Pathwise uniqueness of the stochastic heat equation with spatially inhomogeneous white noise. Ann. Probab. 46(6), 3090–3187 (2017)

    Article  MathSciNet  Google Scholar 

  26. Tudor, C.A.: Recent developments on stochastic heat equation with additive fractional-colored noise. Fract. Calc. Appl. Anal. 17(1), 224–246 (2014)

    Article  MathSciNet  Google Scholar 

  27. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Ecole d’été de Probabilités de St. Flour XIV, Lecture Notes in Mathematics. vol. 1180, pp. 266–439, Springer, Berlin (1986)

  28. Xie, B.: Intermittency for stochastic partial differential equations driven by strongly inhomogeneous space-time white noise. J. Differ. Equ. 264, 1050–1079 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zähle, H.: Heat equation with strongly inhomogeneous noise. Stoch. Process. Appl. 112, 95–118 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zähle, H.: Space-time regularity of catalytic super-Brownian motion. Math. Nachr. 278, 942–970 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by National Natural Science Foundation of China (No. 11771209), Humanities and Social Sciences Foundation of the Ministry of Education of China (No. 18YJCZH101), Natural Science Foundation of Jiangsu Province of China (No. BK20161579), Major Research Plan of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA110002), QingLan Project and 333 Talent Training Project of Jiangsu Province (No. BRA2018357).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Intermittency and stochastic pseudo-differential equation with spatially inhomogeneous white noise. Nonlinear Differ. Equ. Appl. 26, 1 (2019). https://doi.org/10.1007/s00030-018-0548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-018-0548-0

Keywords

Mathematics Subject Classification

Navigation