Skip to main content
Log in

Valued fields, metastable groups

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce a class of theories called metastable, including the theory of algebraically closed valued fields (\(\mathrm {ACVF}\)) as a motivating example. The key local notion is that of definable types dominated by their stable part. A theory is metastable (over a sort \(\Gamma \)) if every type over a sufficiently rich base structure can be viewed as part of a \(\Gamma \)-parametrized family of stably dominated types. We initiate a study of definable groups in metastable theories of finite rank. Groups with a stably dominated generic type are shown to have a canonical stable quotient. Abelian groups are shown to be decomposable into a part coming from \(\Gamma \), and a definable direct limit system of groups with stably dominated generic. In the case of \(\mathrm {ACVF}\), among definable subgroups of affine algebraic groups, we characterize the groups with stably dominated generics in terms of group schemes over the valuation ring. Finally, we classify all fields definable in \(\mathrm {ACVF}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. When \(\pi \) is a complete type, this notion is usually referred to as a definable f-generic in the literature.

References

  1. Chatzidakis, Z., Hrushovski, E.: Model theory of difference fields. Trans. Am. Math. Soc. 351(8), 2997–3071 (1999)

    Article  MathSciNet  Google Scholar 

  2. Cherlin, G.L., Reineke, J.: Categoricity and stability of commutative rings. Ann. Math. Logic 9(4), 367–399 (1976)

    Article  MathSciNet  Google Scholar 

  3. Edmundo, M.J.: Solvable groups definable in o-minimal structures. J. Pure Appl. Algebra 185(1–3), 103–145 (2003)

    Article  MathSciNet  Google Scholar 

  4. Edmundo, M.J., Eleftheriou, P.E.: Definable group extensions in semi-bounded o-minimal structures. MLQ Math. Log. Q. 55(6), 598–604 (2009)

    Article  MathSciNet  Google Scholar 

  5. Halevi, Y.: On stably pointed varieties and generically stable groups in ACVF. arXiv:1611.05422

  6. Haskell, D., Hrushovski, E., Macpherson, D.: Definable sets in algebraically closed valued fields: elimination of imaginaries. J. Reine Angew. Math. 597, 175–236 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Haskell, D., Hrushovski, E., Macpherson, D.: Stable Domination and Independance in Algebraically Closed Valued Fields. Number 30 in Lect. Notes Log. Assoc. Symbol. Logic, Chicago, IL. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  8. Hils, M., Kamensky, M., Rideau, S.: Imaginaries in separably closed valued fields. arXiv:1612.02142

  9. Hrushovski, E., Loeser, F.: Non-archimedean Tame Topology and Stably Dominated Types. Volume 192 of Ann. of Math. Stud. Princeton University Press, Princeton, NJ (2016)

    Book  Google Scholar 

  10. Haskell, D., Macpherson, D.: Cell decompositions of \({\rm C}\)-minimal structures. Ann. Pure Appl. Logic 66(2), 113–162 (1994)

    Article  MathSciNet  Google Scholar 

  11. Hrushovski, E., Pillay, A.: Groups definable in local fields and pseudo-finite fields. Israel J. Math. 85(1–3), 203–262 (1994)

    Article  MathSciNet  Google Scholar 

  12. Hrushovski, E.: Unidimensional theories are superstable. Ann. Pure Appl. Logic 50(2), 117–137 (1990)

    Article  MathSciNet  Google Scholar 

  13. Hrushovski, E., Tatarsky, A.: Stable embeddedness in algebraically closed valued fields. J. Symb. Log. 71(3), 831–862 (2006)

    Article  MathSciNet  Google Scholar 

  14. Lipshitz, L.: Rigid subanalytic sets. Am. J. Math. 115(1), 77–108 (1993)

    Article  MathSciNet  Google Scholar 

  15. Lipshitz, L., Robinson, Z.: One-dimensional fibers of rigid subanalytic sets. J. Symb. Log. 63(1), 83–88 (1998)

    Article  MathSciNet  Google Scholar 

  16. Marker, D.: Model Theory: An Introduction. Number 217 in Graduate Texts in Mathematics. Springer, Berlin (2002)

    Google Scholar 

  17. Mumford, D.: The Red Book of Varieties and Schemes, Volume 1358 of Lecture Notes in Mathematics. Springer, Berlin (expanded edition, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello)

  18. Pillay, A.: An Introduction to Stability Theory, volume 8 of Oxford Logic Guides. Oxford University Press, Oxford (1983)

    Google Scholar 

  19. Pillay, A.: On groups and fields definable in \(o\)-minimal structures. J. Pure Appl. Algebra 53(3), 239–255 (1988)

    Article  MathSciNet  Google Scholar 

  20. Pillay, A.: On fields definable in \(\mathbf{Q}_p\). Arch. Math. Logic 29(1), 1–7 (1989)

    Article  MathSciNet  Google Scholar 

  21. Poizat, B.: MM. Borel, Tits, Zil’ber et le Général nonsense. J. Symb. Log. 53(1), 124–131 (1988)

    Article  MathSciNet  Google Scholar 

  22. Peterzil, Y., Pillay, A.: Generic sets in definably compact groups. Fund. Math. 193(2), 153–170 (2007)

    Article  MathSciNet  Google Scholar 

  23. Peterzil, Y., Pillay, A., Starchenko, S.: Simple algebraic and semialgebraic groups over real closed fields. Trans. Am. Math. Soc. 352(10), 4421–4450 (2000)

    Article  MathSciNet  Google Scholar 

  24. Peterzil, Y., Steinhorn, C.: Definable compactness and definable subgroups of o-minimal groups. J. Lond. Math. Soc. (2) 59(3), 769–786 (1999)

    Article  MathSciNet  Google Scholar 

  25. Peterzil, Y., Starchenko, S.: Uniform definability of the Weierstrass \(\wp \) functions and generalized tori of dimension one. Selecta Math. (N.S.) 10(4), 525–550 (2004)

    Article  MathSciNet  Google Scholar 

  26. Rideau, S.: Imaginaries in valued differential fields. J. Reine Angew. Math. (to appear)

  27. Serre, J.-P.: Lectures on the Mordell-Weil Theorem. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt

  28. Simonetta, P.: An example of a \(C\)-minimal group which is not abelian-by-finite. Proc. Am. Math. Soc. 131(12), 3913–3917 (2003)

    Article  MathSciNet  Google Scholar 

  29. Strzebonski, A.: Euler characteristic in semialgebraic and other \(o\)-minimal groups. J. Pure Appl. Algebra 96(2), 173–201 (1994)

    Article  MathSciNet  Google Scholar 

  30. van den Dries, L.: Weil’s group chunk theorem: a topological setting. Illinois J. Math. 34(1), 127–139 (1990)

    Article  MathSciNet  Google Scholar 

  31. van den Dries, L.: Tame Topology and o-Minimal Structures, Volume 248 of London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  32. Zilber, B.: Some model theory of simple algebraic groups over algebraically closed fields. Colloq. Math. 48(2), 173–180 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvain Rideau-Kikuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrushovski, E., Rideau-Kikuchi, S. Valued fields, metastable groups. Sel. Math. New Ser. 25, 47 (2019). https://doi.org/10.1007/s00029-019-0491-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0491-x

Mathematics Subject Classification

Navigation