Skip to main content
Log in

Virtual rigid motives of semi-algebraic sets

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let k be a field of characteristic zero containing all roots of unity and \(K=k(( t))\). We build a ring morphism from the Grothendieck ring of semi-algebraic sets over K to the Grothendieck ring of motives of rigid analytic varieties over K. It extends the morphism sending the class of an algebraic variety over K to its cohomological motive with compact support. We show that it fits inside a commutative diagram involving Hrushovski and Kazhdan’s motivic integration and Ayoub’s equivalence between motives of rigid analytic varieties over K and quasi-unipotent motives over k; we also show that it satisfies a form of duality. This allows us to answer a question by Ayoub, Ivorra and Sebag about the analytic Milnor fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I. Société Mathématique de France, Paris (2007)

    MATH  Google Scholar 

  2. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. II. Société Mathématique de France, Paris (2007)

    MATH  Google Scholar 

  3. Ayoub, A.: Motifs des variétés analytiques rigides. Mém. Soc. Math. Fr., Nouv. Sér. 140–141, 1–386 (2015)

    MATH  Google Scholar 

  4. Ayoub, J., Ivorra, F., Sebag, J.: Motives of rigid analytic tubes and nearby motivic sheaves. Ann. Sci. Éc. Norm. Supér. (4) 50(6), 1335–1382 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Berthelot, P.: Cohomologie Rigide et Cohomologie Rigide à Supports Propres, Première Partie. Prépublication IRMAR 96-03, Université de Rennes, (1996)

  6. Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4), 1011–1032 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Bittner, F.: On motivic zeta functions and the motivic nearby fiber. Math. Z. 249(1), 63–83 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Borisov, L.: The class of the affine line is a zero divisor in the Grothendieck ring. J. Algebr. Geom. 27(2), 203–209 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis. A Systematic Approach to Rigid Analytic Geometry. Springer, New York (1984)

    MATH  Google Scholar 

  10. Bosch, S., Lütkebohmert, W.: Formal and rigid geometry. I: rigid spaces. Math. Ann. 295(2), 291–317 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Cisinski, D.-C., Déglise, F.: Triangulated categories of mixed motives. arXiv:0912.2110 [math] (2009)

  12. Cluckers, R., Lipshitz, L.: Fields with analytic structure. J. Eur. Math. Soc. (JEMS) 13(4), 1147–1223 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Deligne, P.: Voevodsky’s Lectures on Cross Functors (2001)

  14. Denef, J., Loeser, F.: Motivic Igusa zeta functions. J. Algebraic Geom. 7(3), 505–537 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Denef, J., Loeser, F.: Geometry on arc spaces of algebraic varieties. In: European Congress of Mathematics, Vol. I (Barcelona, 2000), volume 201 of Progr. Math., pp. 327–348. Birkhäuser, Basel (2001)

  17. Denef, J., Loeser, F.: Lefschetz numbers of iterates of the monodromy and truncated arcs. Topology 41(5), 1031–1040 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Fresnel, J., van der Put, M.: Rigid Analytic Geometry and Its Applications. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  19. Fulton, W.: Introduction to Toric Varieties. The 1989 William H. Roever Lectures in Geometry. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  20. Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Algebraic Geometry and Number Theory. In Honor of Vladimir Drinfeld’s 50th Birthday, pp. 261–405. Birkhäuser, Basel (2006)

  21. Hrushovski, E., Loeser, F.: Monodromie et formule des points fixes de Lefschetz. Ann. Sci. Éc. Norm. Supér. (4) 48(2), 313–349 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Ivorra, F., Sebag, J.: Nearby motives and motivic nearby cycles. Sel. Math. New Ser. 19(4), 879–902 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Le Stum, B.: Rigid Cohomology. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  24. Lipshitz, L., Robinson, Z.: Uniform properties of rigid subanalytic sets. Trans. Am. Math. Soc. 357(11), 4349–4377 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Loeser, F.: Seattle lectures on motivic integration. In: Algebraic Geometry, Seattle 2005. Proceedings of the 2005 Summer Research Institute, Seattle, WA, USA, July 25–August 12, 2005, pp. 745–784. American Mathematical Society (AMS), Providence, RI (2009)

  26. Martin, F.: Cohomology of locally closed semi-algebraic subsets. Manuscr. Math. 144(3–4), 373–400 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Morel, F., Voevodsky, V.: \({\mathbb{A}}^1\)-homotopy theory of schemes. Publ. Math. Inst. Hautes Étud. Sci. 90, 45–143 (1999)

    MATH  Google Scholar 

  28. Nicaise, J., Payne, S.: A tropical motivic Fubini theorem with applications to Donaldson–Thomas theory. Duke. Math. J. arXiv:1703.10228 (2017) (to appear)

  29. Nicaise, J., Payne, S., Schroeter, F.: Tropical refined curve counting via motivic integration. Geom. Topol. 22(6), 3175–3234 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Nicaise, J., Sebag, J.: Motivic Serre invariants, ramification, and the analytic Milnor fiber. Invent. math. 168(1), 133–173 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Stacks project authors. The Stacks project (2018)

  32. Tate, J.: Rigid analytic spaces. Invent. Math. 12, 257–289 (1971)

    MathSciNet  MATH  Google Scholar 

  33. van den Dries, L.: Tame Topology and O-Minimal Structures. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  34. Verdier, J.-L.: Des catégories dérivées des catégories abéliennes. Société Mathématique de France, Paris (1996)

    MATH  Google Scholar 

  35. Yin, Y.: Special transformations in algebraically closed valued fields. Ann. Pure Appl. Logic 161(12), 1541–1564 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Yin, Y.: Integration in algebraically closed valued fields. Ann. Pure Appl. Logic 162(5), 384–408 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank François Loeser for his constant support during the preparation of this project. I also thank Joseph Ayoub for a very careful reading that greatly helped to improve this paper, and Marco Robalo, Florian Ivorra and Julien Sebag for discussions and remarks. Thanks also to the referee for valuable remarks that helped to improve this paper. This research was partially supported by ANR-15-CE40-0008 (Défigéo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Forey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forey, A. Virtual rigid motives of semi-algebraic sets. Sel. Math. New Ser. 25, 6 (2019). https://doi.org/10.1007/s00029-019-0453-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0453-3

Keywords

Mathematics Subject Classification

Navigation