Skip to main content
Log in

On the wellposedness of the KdV equation on the space of pseudomeasures

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove a wellposedness result of the KdV equation on the space of periodic pseudomeasures, also referred to as the Fourier Lebesgue space \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\), where \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\) is endowed with the weak* topology. Actually, it holds on any weighted Fourier Lebesgue space \(\mathscr {F}\ell ^{s,\infty }(\mathbb {T},\mathbb {R})\) with \(-1/2 < s \le 0\) and improves on a wellposedness result of Bourgain for small Borel measures as initial data. A key ingredient of the proof is a characterization for a distribution q in the Sobolev space \(H^{-1}(\mathbb {T},\mathbb {R})\) to be in \(\mathscr {F}\ell ^{\infty }(\mathbb {T},\mathbb {R})\) in terms of asymptotic behavior of spectral quantities of the Hill operator \(-\partial _{x}^{2} + q\). In addition, wellposedness results for the KdV equation on the Wiener algebra are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation. Geom. Funct. Anal. 3(3), 209–262 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain, J.: Periodic Korteweg–de Vries equation with measures as initial data. Sel. Math. (New Ser.) 3(2), 115–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckmaster, T., Koch, H.: The Korteweg–de Vries equation at H\(^{-1}\) regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(5), 1071–1098 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christ, M., Colliander, J., Tao, T.: Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Am. J. Math. 125(6), 1235–1293 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global well-posedness for KdV and modified KdV on R and T. J. Am. Math. Soc. 16(3), 705–749 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  6. Djakov, P., Mityagin, B.: Instability zones of periodic 1-dimensional Schrödinger and Dirac operators. Russ. Math. Surv. 61, 663–766 (2006)

    Article  MATH  Google Scholar 

  7. Djakov, P., Mityagin, B.: Spectral gaps of Schrödinger operators with periodic singular potentials. Dyn. Partial Differ. Equ. 6(2), 95–165 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grébert, B., Kappeler, T.: The Defocusing NLS Equation and Its Normal Form. European Mathematical Society (EMS), Zürich (2014)

    Book  MATH  Google Scholar 

  9. Guo, Z.: Global well-posedness of Korteweg–de Vries equation in \(H^{-3/4}({\mathbb{R}})\). J. Math. Pures Appl. 91(6), 583–597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kappeler, T.: Solutions to the Korteweg–de Vries equation with irregular initial profile. Commun. Partial Diff. Equ. 11(9), 927–945 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kappeler, T., Maspero, A., Molnar, J.C., Topalov, P.: On the convexity of the KdV Hamiltonian. Commun. Math. Phys. 346(1), 191–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kappeler, T., Mityagin, B.: Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator. SIAM J. Math. Anal. 33(1), 113–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kappeler, T., Möhr, C.: Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials. J. Funct. Anal. 186(1), 62–91 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kappeler, T., Möhr, C., Topalov, P.: Birkhoff coordinates for KdV on phase spaces of distributions. Sel. Math. (New Ser.) 11(1), 37–98 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kappeler, T., Molnar, J.C.: On the wellposedness of the KdV/KdV2 equations and their frequency maps. Ann. Inst. H. Poincaré Anal. Non Linéaire (online) (2017). doi:10.1016/j.anihpc.2017.03.003

  16. Kappeler, T., Perry, P., Topalov, P.: The Miura map on the line. Int. Math. Res. Not. 50, 3091–3133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kappeler, T., Pöschel, J.: KdV and KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  18. Kappeler, T., Pöschel, J.: On the periodic KdV equation in weighted Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 841–853 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kappeler, T., Schaad, B., Topalov, P.: Qualitative features of periodic solutions of KdV. Commun. Partial Diff. Equ. 38(9), 1626–1673 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kappeler, T., Serier, F., Topalov, P.: On the symplectic phase space of KdV. Proc. Am. Math. Soc. 136(5), 1691–1698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kappeler, T., Topalov, P.: Riccati representation for elements in \(H^{-1}(\mathbb{T})\) and its applications. Pliska Stud. Math. Bulg. 15, 171–188 (2003)

    MathSciNet  Google Scholar 

  22. Kappeler, T., Topalov, P.: Global wellposedness of KdV in \(H^{-1}(\mathbb{T},\mathbb{R})\). Duke Math. J. 135(2), 327–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573–603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kenig, C.E., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106(3), 617–633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Korotyaev, E.: Characterization of the spectrum of Schrödinger operators with periodic distributions. Int. Math. Res. Not. 2003(37), 2019–2031 (2003)

    Article  MATH  Google Scholar 

  26. Molinet, L.: A note on ill posedness for the KdV equation. Differ. Integral Equ. 24(7–8), 759–765 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Molinet, L.: Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv. Math. 230(4–6), 1895–1930 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pöschel, J.: Hill’s potentials in weighted Sobolev spaces and their spectral gaps. Math. Ann. 349(2), 433–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Savchuk, A.M., Shkalikov, A.A.: Sturm–Liouville operators with distribution potentials. Tr. Mosk. Math. Obs. 64, 159–212 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Savchuk, A.M., Shkalikov, A.A.: Inverse problem for Sturm–Liouville operators with distribution potentials: reconstruction from two spectra. Russ. J. Math. Phys. 12(4), 507–514 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Tao, T.: Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006)

  32. Tsutsumi, Y.: The Cauchy problem for the Korteweg–de Vries equation with measures as initial data. SIAM J. Math. Anal. 20(3), 582–588 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kappeler.

Additional information

Thomas Kappeler: Partially supported by the Swiss National Science Foundation.

Jan Molnar: Partially supported by the Swiss National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kappeler, T., Molnar, J. On the wellposedness of the KdV equation on the space of pseudomeasures. Sel. Math. New Ser. 24, 1479–1526 (2018). https://doi.org/10.1007/s00029-017-0347-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0347-1

Keywords

Mathematics Subject Classification

Navigation