Skip to main content
Log in

The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

The weighted Weiss conjecture states that the system theoretic property of weighted admissibility can be characterized by a resolvent growth condition. For positive weights, it is known that the conjecture is true if the system is governed by a normal operator; however, the conjecture fails if the system operator is the unilateral shift on the Hardy space \({H^2(\mathbb{D})}\) (discrete time) or the right-shift semigroup on \({L^2(\mathbb{R}_+)}\) (continuous time). To contrast and complement these counterexamples, in this paper, positive results are presented characterizing weighted admissibility of linear systems governed by shift operators and shift semigroups. These results are shown to be equivalent to the question of whether certain generalized Hankel operators satisfy a reproducing kernel thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duren P., Gallardo-Gutiérrez E. A., Montes-Rodríguez A.: A Paley–Wiener theorem for Bergman spaces with application to invariant subspaces. Bull. Lond. Math. Soc. 39(3), 459–466 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Frazier M., Jawerth B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Frazier, B. Jawerth, and G. Weiss. Littlewood–Paley theory and the study of function spaces, volume 79 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1991.

  4. Haak B., Le Merdy C.: α-admissibility of observation and control operators. Houston J. Math. 31(4), 1153–1167 (2005)

    MATH  MathSciNet  Google Scholar 

  5. M. Haase. The functional calculus for sectorial operators, volume 169 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.

  6. Harper Z.: Applications of the discrete Weiss conjecture in operator theory. Integral Equations Operator Theory 54(1), 69–88 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jacob B., Partington J.R.: The Weiss conjecture on admissibility of observation operators for contraction semigroups. Integral Equations Operator Theory 40(2), 231–243 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Janson S.: Hankel operators between weighted Bergman spaces. Ark. Mat. 26(2), 205–219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Janson S., Peetre J.: Paracommutators—boundedness and Schatten-von Neumann properties. Trans. Amer. Math. Soc. 305(2), 467–504 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Y. Meyer. Wavelets and operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1992.

  11. N. K. Nikolski. Operators, functions, and systems: an easy reading. Vol. 1, volume 92 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

  12. Partington J.R., Weiss G.: Admissible observation operators for the right-shift semigroup. Math. Control Signals Systems 13(3), 179–192 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. V. V. Peller. Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class γ p . Integral Equations Operator Theory, 5(2):244–272, 1982.

    Google Scholar 

  14. Peller V.V.: Hankel operators and their applications. Springer Monographs in Mathematics. Springer-Verlag, New York (2003)

    Book  MATH  Google Scholar 

  15. B. Sz.-Nagy, C. Foias, H. Bercovici, and L. Kérchy. Harmonic analysis of operators on Hilbert space. Universitext. Springer, New York, second edition, 2010.

  16. Triebel H.: Theory of function spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (2010)

    Google Scholar 

  17. M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, 2009.

  18. G. Weiss. Two conjectures on the admissibility of control operators. In Estimation and control of distributed parameter systems (Vorau, 1990), volume 100 of Internat. Ser. Numer. Math., pages 367–378. Birkhäuser, Basel, 1991.

  19. G. Weiss. A powerful generalization of the Carleson measure theorem? In Open problems in mathematical systems and control theory, Comm. Control Engrg. Ser., pages 267–272. Springer, London, 1999.

  20. G. Weiss, O. J. Staffans, and M. Tucsnak. Well-posed linear systems—a survey with emphasis on conservative systems. Int. J. Appl. Math. Comput. Sci., 11(1):7–33, 2001. Mathematical theory of networks and systems (Perpignan, 2000).

    Google Scholar 

  21. A. Wynn. α-admissibility of the right-shift semigroup on \({L^2(\mathbb {R}_+)}\). Systems Control Lett., 58(9):677–681, 2009.

  22. Wynn A.: Counterexamples to the discrete and continuous weighted Weiss conjectures. SIAM J. Control Optim. 48(4), 2620–2635 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wynn A.: α-admissibility of observation operators in discrete and continuous time. Complex Anal. Oper. Theory 4(1), 109–131 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Zhu. Operator theory in function spaces, volume 138 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2007.

  25. Zygmund A.: Trigonometric series. 2nd ed. Vol. I. Cambridge University Press, New York (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, B., Rydhe, E. & Wynn, A. The weighted Weiss conjecture and reproducing kernel theses for generalized Hankel operators. J. Evol. Equ. 14, 85–120 (2014). https://doi.org/10.1007/s00028-013-0209-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-013-0209-z

Mathematics Subject Classification (2000)

Keywords

Navigation