Skip to main content
Log in

Sea lamprey (Petromyzon marinus L.) nests do not affect stream functionality despite increasing physical heterogeneity

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The sea lamprey (Petromyzon marinus L.) can be considered an ecosystem engineer, as it can substantially modify the river beds where it spawns. Sea lampreys dig nests by removing large volumes of cobbles to create a pit, and leaving them in a mound downstream, thus altering local bed morphology. Previous studies showed that sea lamprey nest-building behaviour increases riverbed heterogeneity in depth and water velocity, which in turn promotes macroinvertebrate diversity. Based on that finding, our study aimed at assessing whether these changes promoted ecosystem functioning. We measured multiple ecosystem functions (biofilm accretion, phosphate and ammonium uptake, and litter breakdown) on the pit and the mound of 30 lamprey nests, as well as on 30 unmodified sites. In spite of the physical heterogeneity, all processes measured showed no differences among sites, pointing towards a complex relationship between physical heterogeneity, biodiversity, and ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets and the code generated during and/or analysed during the current study are available in the INRAE repository following this link: https://doi.org/10.57745/MKRJ52.

References

  • Applegate VC (1950) Natural history of the sea lamprey, Petromyzon marinus. In: Michigan, federal government series 55, U.S. Fish and Wildlife Service, Ann Arbor, Michigan: University of Michigan Library

  • Baerlocher F (2005) Leaf mass loss estimated by litter bag technique. In: Methods to study litter decomposition: a practical guide. Springer, pp 37–42

  • Barber I (2013) The evolutionary ecology of nest construction: insight from recent fish studies. Avian Biol Res 6(2):83–98

    Article  Google Scholar 

  • Bastias E, Bolivar M, Ribot M, Peipoch M, Thomas SA, Sabater F, Martí E (2020) Spatial heterogeneity in water velocity drives leaf litter dynamics in streams. Freshw Biol 65(3):435–445

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48

    Article  Google Scholar 

  • Biggs BJF, Goring DG, Nikora VI (1998) Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J Phycol 34(4):598–607

    Article  Google Scholar 

  • Boeker C, Geist J (2016) Lampreys as ecosystem engineers: burrows of Eudontomyzon sp. and their impact on physical, chemical, and microbial properties in freshwater substrates. Hydrobiologia 777(1):171–181

    Article  CAS  Google Scholar 

  • Boeker C, Lueders T, Mueller M, Pander J, Geist J (2016) Alteration of physico-chemical and microbial properties in freshwater substrates by burrowing invertebrates. Limnologica 59:131–139

    Article  CAS  Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity- ecosystem function relationship in soils. Soil Biol Biochem 42(3):405–417

    Article  CAS  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25(4):787–795

    Article  Google Scholar 

  • Braun A, Auerswald K, Geist J (2012) Drivers and spatio-temporal extent of hyporheic patch variation: implications for sampling. PLoS One 7(7):e42046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai W, Li Y, Hu J, Cheng H (2021) Exploring the microbial ecological functions in response to vertical gradients in a polluted urban river. Clean 49(9):2100004

    CAS  Google Scholar 

  • Caliman A, Pires AF, Esteves FA, Bozelli RL, Farjalla VF (2010) The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers Conserv 19(3):651–664

    Article  Google Scholar 

  • Cardenas MB, Ford AE, Kaufman MH, Kessler AJ, Cook PLM (2016) Hyporheic flow and dissolved oxygen distribution in fish nests: The effects of open channel velocity, permeability patterns, and groundwater upwelling. J Geophys Res Biogeosci 121(12):3113–3130

    Article  CAS  Google Scholar 

  • Cardinale BJ, Palmer MA, Swan CM, Brooks S, Poff NL (2002) The Influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology 83(2):412–422

    Article  Google Scholar 

  • Carpenter SR, McCreary NJ (1985) Effects of fish nests on pattern and zonation of submersed macrophytes in a softwater lake. Aquat Bot 22(1):21–32

    Article  Google Scholar 

  • Childress ES, Allan JD, McIntyre PB (2014) Nutrient subsidies from iteroparous fish migrations can enhance stream productivity. Ecosystems 17(3):522–534

    Article  CAS  Google Scholar 

  • Cramer MJ, Willig MR (2005) Habitat heterogeneity, species diversity and null models. Oikos 108(2):209–218

    Article  Google Scholar 

  • Damgaard JS, Whitehouse RJS, Soulsby RL (1997) Bed-load sediment transport on steep longitudinal slopes. J Hydraul Eng 123(12):1130–1138

    Article  Google Scholar 

  • Dhamelincourt M, Buoro M, Rives J, Sebihi S, Tentelier C (2021) Individual and group characteristics affecting nest building in sea lamprey (Petromyzon marinus L. 1758). J Fish Biol 98(2):557–565

    Article  PubMed  Google Scholar 

  • Dhamelincourt M, Rives J, Lange F, Elosegi A, Tentelier C (2022) Habitat choice versus habitat transformation in a nest-building fish: Which matters most? Behav Ecol 33(3):615–623

    Article  Google Scholar 

  • Dhamelincourt M, Rives J, Pons M, Larrañaga A, Tentelier C, Elosegi A (2022) Sea lamprey nests promote the diversity of benthic macroinvertebrate assemblages. PLOS One 17(12):e0274719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donovan M, Belmont P, Sylvester Z (2021) Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J Geophys Res 126(3):e2020JF006058

    Google Scholar 

  • Duffy JE (2009) Why biodiversity is important to the functioning of real-world ecosystems. Front Ecol Environ 7(8):437–444

    Article  Google Scholar 

  • ECP (2018) Ecology and fish population biology facility. INRAE

  • Elosegi A, Flores L, Díez J (2011) The importance of local processes on river habitat characteristics: a Basque stream case study. Limnética 30(2):0183–0196

    Article  Google Scholar 

  • Elosegi A, Nicolás A, Richardson JS (2018) Priming of leaf litter decomposition by algae seems of minor importance in natural streams during autumn. PLOS One 13(9):e0200180

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira V, Graça MAS (2006) Do invertebrate activity and current velocity affect fungal assemblage structure in leaves? Int Rev Hydrobiol 91(1):1–14

    Article  CAS  Google Scholar 

  • Frainer A, Polvi LE, Jansson R, McKie BG (2018) Enhanced ecosystem functioning following stream restoration: the roles of habitat heterogeneity and invertebrate species traits. J Appl Ecol 55(1):377–385

    Article  Google Scholar 

  • Franklin RB, Mills AL (2009) Importance of spatially structured environmental heterogeneity in controlling microbial community composition at small spatial scales in an agricultural field. Soil Biol Biochem 41(9):1833–1840

    Article  CAS  Google Scholar 

  • Freudenberger L, Hobson PR, Schluck M, Ibisch PL (2012) A global map of the functionality of terrestrial ecosystems. Ecol Complex 12:13–22

    Article  Google Scholar 

  • Gallardo B, Clavero M, Sánchez MI, Vilà M (2016) Global ecological impacts of invasive species in aquatic ecosystems. Glob Change Biol 22(1):151–163

    Article  Google Scholar 

  • Gardner C Jr, Coghlan SM, Zydlewski J (2012) Distribution and abundance of anadromous sea lamprey spawners in a fragmented stream: Current status and potential range expansion following barrier removal. Northeastern Natural 19(1):99–110

    Article  Google Scholar 

  • Gottesfeld A, Hassan M, Tunnicliffe J (2008) Salmon bioturbation and stream process. Am Fish Soc Symp 65:175–193

    Google Scholar 

  • Green P, MacLeod CJ (2016) SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods Ecol Evol 7(4):493–498

    Article  Google Scholar 

  • Harper JL, Williams JT, Sagar GR (1965) The behaviour of seeds in soil: I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J Ecol 53(2):273–286

    Article  Google Scholar 

  • Hart DD, Finelli CM (1999) Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annu Rev Ecol Syst 30(1):363–395

    Article  Google Scholar 

  • Harvey GL, Henshaw AJ, Moorhouse TP, Clifford NJ, Holah H, Grey J, Macdonald DW (2014) Invasive crayfish as drivers of fine sediment dynamics in rivers: field and laboratory evidence. Earth Surf Proc Land 39(2):259–271

    Article  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 448(7150):188–190

    Article  CAS  PubMed  Google Scholar 

  • Hogg RS, Coghlan SM, Zydlewski J, Simon KS (2014) Anadromous sea lampreys (Petromyzon marinus) are ecosystem engineers in a spawning tributary. Freshw Biol 59(6):1294–1307

    Article  Google Scholar 

  • Horner RR, Welch EB (2011) Stream periphyton development in relation to current velocity and nutrients. Can J Fish Aquat Sci 38(4):449–457

    Article  Google Scholar 

  • House WA, Denison FH, Smith JT, Armitage PD (1995) An investigation of the effects of water velocity on inorganic phosphorus influx to a sediment. Environ Pollut 89(3):263–271

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167(2):191–194

    Article  CAS  Google Scholar 

  • Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73(2):280–284

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42(3):594–598

    Article  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444(1):71–84

    Article  Google Scholar 

  • Migradour (2010) Suivi de la reproduction de la Lamproie marine sur le bassin de l’Adour - Tranche 1/3, gaves et nives, Technical report

  • Moore JW, Schindler DE (2005) Impacts of bioturbation by spawning salmon on the community dynamics and ecosystem processes of Alaskan streams. Am Geophy Union Spring Meeting Abstracts 21:NB21B-06

    Google Scholar 

  • Moore JW, Schindler DE (2008) Biotic disturbance and benthic community dynamics in salmon-bearing streams. J Anim Ecol 77(2):275–284

    Article  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evolut 30(11):673–684

    Article  Google Scholar 

  • Paterson DM (2009) Biodiversity and functionality of aquatic ecosystems. In: ‘Biodiversity: structure and function - volume I’, Vol. 1 of Encyclopedia of Life Support Systems, Water, pp 137–150

  • Pereda O, Acuña V, von Schiller D, Sabater S, Elosegi A (2019) Immediate and legacy effects of urban pollution on river ecosystem functioning: a mesocosm experiment. Ecotoxicol Environ Saf 169:960–970

    Article  CAS  PubMed  Google Scholar 

  • Pereda O, Solagaistua L, Atristain M, de Guzmán I, Larrañaga A, von Schiller D, Elosegi A (2020) Impact of wastewater effluent pollution on stream functioning: a whole-ecosystem manipulation experiment. Environ Pollut 258:113719

    Article  CAS  PubMed  Google Scholar 

  • Pereda O, von Schiller D, García-Baquero G, Mor J-R, Acuña V, Sabater S, Elosegi A (2021) Combined effects of urban pollution and hydrological stress on ecosystem functions of Mediterranean streams. Sci Total Environ 753:141971

    Article  CAS  PubMed  Google Scholar 

  • Price KJ, Carrick HJ (2016) Effects of experimental nutrient loading on phosphorus uptake by biofilms: evidence for nutrient saturation in mid-Atlantic streams. Freshwater Sci 35(2):503–517

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing

  • Reardon J, Foreman JA, Searcy RL (1966) New reactants for the colorimetric determination of ammonia. Clinica Chimica Acta Int J Clin Chem 14(3):203–205

    Article  CAS  Google Scholar 

  • Reiss H, Wieking G, Kröncke I (2007) Microphytobenthos of the Dogger Bank: a comparison between shallow and deep areas using phytopigment composition of the sediment. Mar Biol 150:1061–1071

    Article  Google Scholar 

  • Rodgers J, Harvey R (2007) The effect of current on periphytic productivity as determined using carbon-14. JAWRA J Am Water Resour Assoc 12:1109–1118

    Article  Google Scholar 

  • Smith BR (1971) Sea lampreys in the Great Lakes of North America. Academic Press, pp 207–247

  • Sousa R, Araújo MJ, Antunes C (2012) Habitat modifications by sea lampreys (Petromyzonmarinus) during the spawning season: effects on sediments. J Appl Ichthyol 28(5):766–771

    Article  Google Scholar 

  • Steinman AD, Lamberti GA, Leavitt PR (2007) Chapter 17—Biomass and pigments of benthic algae. In: Hauer FR, Lamberti GA (eds) Methods stream ecology, 2nd edn. Academic Press, San Diego, pp 357–379

    Chapter  Google Scholar 

  • Swartwout MC, Keating F, Frimpong EA (2016) A survey of macroinvertebrates colonizing bluehead chub nests in a Virginia stream. J Freshw Ecol 31(1):147–152

    Article  Google Scholar 

  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P (2010) Invertébrés d’eau Douce, systématique biologie, ecologie. CNRS Editions, Paris

    Google Scholar 

  • Tews J, Brose U, Grimm V, Tielbörger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31(1):79–92

    Article  Google Scholar 

  • Thomas FIM, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42(1):81–88

    Article  CAS  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45(1):471–493

    Article  Google Scholar 

  • Villaescusa JA, Casamayor EO, Rochera C, Velázquez D, Chicote A, Quesada A, Camacho A (2010) A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. Int Microbiol 13(2):67–77

    CAS  PubMed  Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41(1):115–139

    Article  CAS  PubMed  Google Scholar 

  • Wong MKL, Guénard B, Lewis OT (2019) Trait-based ecology of terrestrial arthropods. Biol Rev 94(3):999–1022

    Article  PubMed  Google Scholar 

  • Wright JP, Jones CG, Flecker AS (2002) An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132(1):96–101

    Article  PubMed  Google Scholar 

Download references

Funding

Functioning was financed by Pôle Gestion des Migrateurs Amphihalins dans leur Environnement. M.D. PhDs was financed by Univ. Pau and Pays Adour and UPV/EHU. Field work used resources from the IE ECP Experimental Facility of the UMR Ecobiop (ECP 2018) and from the UPV/EHU Stream Ecology laboratory. Grant no. IT1471-22 from the Basque Government funded this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Arturo Elosegi, Jacques Rives, Cédric Tentelier, and Marius Dhamelincourt. Laboratory analysis was realized by Miren Atristain and Marius Dhamelincourt. Statistical analysis was performed by Arturo Elosegi and Marius Dhamelincourt. The first draft of the manuscript was written by Marius Dhamelincourt and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marius Dhamelincourt.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 80 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhamelincourt, M., Rives, J., Atristain, M. et al. Sea lamprey (Petromyzon marinus L.) nests do not affect stream functionality despite increasing physical heterogeneity. Aquat Sci 85, 49 (2023). https://doi.org/10.1007/s00027-023-00946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-023-00946-y

Keywords

Navigation