Skip to main content
Log in

The Moduli Space of Curves, Double Hurwitz Numbers, and Faber’s Intersection Number Conjecture

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We define the dimension 2g − 1 Faber-Hurwitz Chow/homology classes on the moduli space of curves, parametrizing curves expressible as branched covers of \({{\mathbb{P}_1}}\) with given ramification over ∞ and sufficiently many fixed ramification points elsewhere. Degeneration of the target and judicious localization expresses such classes in terms of localization trees weighted by “top intersections” of tautological classes and genus 0 double Hurwitz numbers. This identity of generating series can be inverted, yielding a “combinatorialization” of top intersections of \({\Psi}\) -classes. As genus 0 double Hurwitz numbers with at most 3 parts over ∞ are well understood, we obtain Faber’s Intersection Number Conjecture for up to 3 parts, and an approach to the Conjecture in general (bypassing the Virasoro Conjecture). We also recover other geometric results in a unified manner, including Looijenga’s theorem, the socle theorem for curves with rational tails, and the hyperelliptic locus in terms of κ g–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram A., Cavalieri R., Todorov G.: Evaluating tautological classes using only Hurwitz numbers. Trans. Amer. Math. Soc. 360(11), 6103–6111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bryan J., Pandharipande R.: The local Gromov-Witten theory of curves. J. Amer. Math. Soc. 21(1), 101–136 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavalieri R.: Generating functions for Hurwitz-Hodge integrals. Adv. Math. 218(5), 1419–1429 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deninger C., Murre J.: Motivic decomposition of abelian schemes and the Fourier transform. J. Reine Angew. Math. 422, 201–219 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Ekedahl T., Lando S., Shapiro M., Vainshtein A.: On Hurwitz numbers and Hodge integrals. C. R. Acad. Sci. Paris Sér. I Math. 328, 1175–1180 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Ekedahl T., Lando S., Shapiro M., Vainshtein A.: Hurwitz numbers and intersections on moduli spaces of curves. Invent. Math. 146(2), 297–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faber C.: A conjectural description of the tautological ring of the moduli space of curves. In: Faber C., Looijenga E. (eds). Moduli of Curves and Abelian Varieties, pp. 109–129. Vieweg, Braunschweig (1999)

    Google Scholar 

  8. Faber, C.: Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians. In: Hulek, K., Catanese, F., Peters, C., Reid, M. (eds.) New Trends in Algebraic Geometry, pp. 93–109. London Math. Soc. Lecture Note Ser. 264. Cambridge Univ. Press, Cambridge (1999)

  9. Faber, C.: MAPLE program for computing Hodge integrals. Personal communication. Available at http://math.stanford.edu/~vakil/programs/.

  10. Faber, C.: Personal communication. (2006)

  11. Faber C., Pandharipande R.: Relative maps and tautological classes. J. Eur. Math. Soc. 7(1), 13–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fantechi B., Pandharipande R.: Stable maps and branch divisors. Compositio Math. 130(3), 345–364 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gathmann A.: Absolute and relative Gromov-Witten invariants of very ample hypersurfaces. Duke Math. J. 115(2), 171–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Getzler E., Pandharipande R.: Virasoro constraints and the Chern classes of the Hodge bundle. Nuclear Phys. B 530(3), 701–714 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Givental A.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Notices 2001(23), 1265–1286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Givental, A.: Gromov-Witten invariants and quantization of quadratic hamiltonians.Mosc. Math. J. 1(4), 551–568, 645 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Goulden I.P., Jackson D.M.: Combinatorial Enumeration. Wiley, New York (1983)

    MATH  Google Scholar 

  18. Goulden I.P., Jackson D.M.: Transitive factorisations into transpositions and holomorphic mappings on the sphere. Proc. Amer. Math. Soc. 125(1), 51–60 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goulden I.P., Jackson D.M., Vainshtein A.: The number of ramified coverings of the sphere by the torus and surfaces of higher genera. Ann. Combin. 4(1), 27–46 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goulden I.P., Jackson D.M., Vakil R.: The Gromov-Witten potential of a point, Hurwitz numbers, and Hodge integrals. Proc. London Math. Soc. (3) 83(3), 563–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goulden I.P., Jackson D.M., Vakil R.: Towards the geometry of double Hurwitz numbers. Adv. Math. 198(1), 43–92 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goulden I.P., Jackson D.M., Vakil R.: A short proof of the λ g -Conjecture without Gromov-Witten theory: Hurwitz theory and the moduli of curves. J. Reine Angew. Math. 637, 175–191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Graber T., Pandharipande R.: Localization of virtual classes. Invent. Math. 135(2), 487–518 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Graber, T., Vakil, R.: On the tautological ring of \({{{\overline{\mathcal M}}_{g,n}}}\). In: Proceedings of the Seventh Gökova Geometry-Topology Conference 2000, International Press, Somerville (2000)

  25. Graber T., Vakil R.: Hodge integrals, Hurwitz numbers, and virtual localization. Compositio Math. 135(1), 25–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Graber T., Vakil R.: Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J. 130(1), 1–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hori, K. et al.: Gromov-Witten Theory and Mirror Symmetry. Clay Math. Inst., Amer. Math. Soc. (2002)

  28. Ionel E.-N., Parker T.H.: Relative Gromov-Witten invariants. Ann. of Math. (2) 157(1), 45–96 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ionel E.-N., Parker T.H.: The symplectic sum formula for Gromov-Witten invariants. Ann. of Math. (2) 159(3), 935–1025 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kazarian M.E., Lando S.K.: An algebro-geometric proof of Witten’s conjecture. J. Amer. Math. Soc. 20, 1079–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, Y.-P., Pandharipande, R.: Frobenius Manifolds, Gromov-Witten Theory, and Virasoro Constraints. to appear

  32. Li A.-M., Ruan Y.: Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds. Invent. Math. 145(1), 151–218 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differential Geom. 57(3), 509–578 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Li J.: A degeneration formula of GW-invariants. J. Differential Geom. 60(2), 199–293 (2002)

    MathSciNet  MATH  Google Scholar 

  35. Liu K., Xu H.: New properties of the intersection numbers on moduli spaces of curves. Math. Res. Lett. 14(6), 1041–1054 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Liu K., Xu H.: A proof of the Faber intersection number conjecture. J. Differential Geom. 83(2), 313–335 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Liu C.-C.M., Liu K., Zhou J.: A proof of a conjecture of Mariõ-Vafa on Hodge integrals. J. Differential Geom. 65(2), 289–340 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Looijenga E.: On the tautological ring of \({{\mathcal {M}_g}}\). Invent. Math. 121(2), 411–419 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Okounkov A., Pandharipande R.: Gromov-Witten theory, Hurwitz numbers, and matrix models, I. In: Abramovich D. et al. (eds.) Algebraic Geometry–Seattle 2005, pp. 325–414. Amer. Math. Soc., Providence (2009)

    Google Scholar 

  40. Pandharipande R.: Hodge integrals and degenerate contributions. Comm. Math. Phys. 208(2), 489–506 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pandharipande, R.: Three questions in Gromov-Witten theory. In: Li, D. (ed.) Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 503–512, Higher Ed. Press, Beijing (2002)

    Google Scholar 

  42. Shadrin, S., Shapiro, M., Vainshtein, A.: On double Hurwitz numbers in genus 0. In: Proceedings of FPSAC’07. Tianjin, China (2007)

  43. Shadrin S., Zvonkine D.: Changes of variables in ELSV-type formulas. Michigan Math. J. 55(1), 209–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vakil R.: The moduli space of curves and its tautological ring. Notices Amer. Math. Soc. 50(6), 647–658 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Vakil, R.: The moduli space of curves and Gromov-Witten theory. In: Thaddeus, M. et al. (eds.) Enumerative Invariants in Algebraic Geometry and String Theory, pp. 143C198. Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Goulden.

Additional information

The first two authors are partially supported by NSERC grants. The third author is partially supported by NSF PECASE/CAREER grant DMS–0238532.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goulden, I.P., Jackson, D.M. & Vakil, R. The Moduli Space of Curves, Double Hurwitz Numbers, and Faber’s Intersection Number Conjecture. Ann. Comb. 15, 381–436 (2011). https://doi.org/10.1007/s00026-011-0102-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-011-0102-9

Mathematics Subject Classification

Keywords

Navigation