Skip to main content
Log in

Chicxulub Crater Joint Gravity and Magnetic Anomaly Analysis: Structure, Asymmetries, Impact Trajectory and Target Structures

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Modeling gravity and magnetic anomalies over the Chicxulub crater are used to constrain the structure, stratigraphy, and asymmetries. Chicxulub is a multiring ~ 200 km rim diameter structure with a central uplift and well-preserved peak ring. The low relief terrain and physical property contrasts have facilitated geophysical modeling of the structure and impactite deposits. Nevertheless, contrasting models have been obtained due to data resolution limitations, uneven coverage, non-uniqueness solutions, boundary conditions, and heterogeneous/anisotropic media. We employ a multi-technique approach based on regional–residual separation, spectral analysis, first and second derivatives, upward and downward analytical continuations, horizontal gradients, analytical signal, Euler deconvolution, reduction to the pole, and forward modeling to constraint the anomaly sources, geometry and depths. Forward modeling of gravity anomaly favors central uplift flat-top models, whereas magnetic models show irregular shapes with a peak towards the NE, at 4–5 km depth. Analysis shows the effects of intersecting regional anomalies in the semicircular pattern that limit the definition of asymmetries, which constrains impact angle and trajectory, crater structure and pre-existing target features. Models link lateral–vertical density and magnetic property contrasts, distinguishing non-magnetic pre-and post-impact carbonates and carbonate-rich breccias from melt and basement rich breccias, and displaced, fractured impactites and basement uplift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

Potential field anomaly data used in the study has been retrieved from previous studies referenced in the Methods and available upon request from authors.

Code Availability

No code material was developed. Reference to codes used are given in the Methods section.

References

  • Alvarez, L. W., Alvarez, W., Asaro, F., & Michel, H. V. (1980). Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science, 208, 1095–1108.

    Article  Google Scholar 

  • Barton, P., Grieve, R., Morgan, J., Surendra, A., Vermeesch, P., Christeson, G., Gulick, S., & Warner, M. (2010). Seismic images of Chicxulub impact melt sheet and comparison with the Sudbury structure. Special Paper Geological Society America, 465, 103–113. https://doi.org/10.1130/2010.2465(07)

    Article  Google Scholar 

  • Batista, J. A., Pérez-Flores, M. A., & Urrutia-Fucugauchi, J. (2013). Three-dimensional gravity modeling of Chicxulub crater structure, constrained with marine seismic data and land boreholes. Earth, Planets and Space, 65(9), 973–983.

    Article  Google Scholar 

  • Battacharyya, B. K. (1980). A generalized multibody model for inversion of magnetic anomalies. Geophysics, 45, 255–270.

    Article  Google Scholar 

  • Bell, C., Morgan, J. V., Hampson, G. J., & Trudgill, B. (2004). Stratigraphic and sedimentological observations from seismic data across the Chicxulub impact basin. Meteoritics & Planetary Science, 39(7), 1089–1098. https://doi.org/10.1111/j.1945-5100.2004.tb01130.x.

    Article  Google Scholar 

  • Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge University Press.

    Google Scholar 

  • Blakely, R. J., & Simpson, R. W. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51(7), 1494–1498.

    Article  Google Scholar 

  • Canales-Garcia, I., Urrutia-Fucugauchi, J., & Aguayo-Camargo, E. (2018). Seismic imaging and attribute analysis of Chicxulub crater central sector, Yucatan platform, Gulf of Mexico. Geologica Acta, 16(2), 215–235.

    Google Scholar 

  • Christeson, G. L., et al. (2018). Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 495, 1–11.

    Article  Google Scholar 

  • Christeson, G. L., Collins, G. S., Morgan, J. V., Gulick, S. P. S., Barton, P. J., & Warner, M. R. (2009). Mantle deformation beneath the Chicxulub impact crater. Earth and Planetary Science Letters, 284, 249–257.

    Article  Google Scholar 

  • Christeson, G. L., Morgan, J. V., & Gulick, S. P. S. (2021). Mapping the Chicxulub impact stratigraphy and peak ring using drilling and seismic data. Journal of Geophysical Research Planets, 126, e2021JE006938.

    Article  Google Scholar 

  • Collins, G. S., Morgan, J., Barton, P., Christeson, G. L., Gulick, S., Urrutia-Fucugauchi, J., Warner, M., & Wünnemann, K. (2008). Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity. Earth and Planetary Science Letters, 270, 221–230.

    Article  Google Scholar 

  • Collins, G. S., Patel, N., Davison, T. M., Rae, A. S. P., Morgan, J. V., Gulick, S. P. S., IODP-ICDP Expedition 364 Science Party. (2020). A steeply-inclined trajectory for the Chicxulub impact. Nature Communications, 11, 1480. https://doi.org/10.1038/s41467-020-15269-x

    Article  Google Scholar 

  • Connors, M., Hildebrand, A. R., Pilkington, M., Ortiz-Aleman, C., Chavez, R. E., Urrutia-Fucugauchi, J., Graniel-Castro, E., Camara-Zi, A., Vasquez, J., & Halpenny, J. F. (1996). Yucatan karst features and the size of Chicxulub crater. Geophysical Journal International, 127(3), F11–F14.

    Article  Google Scholar 

  • Cornejo-Toledo, A., & Hernandez-Osuna, A. (1950). Las anomalías gravimétricas en la cuenca salina del istmo, planicie costera de Tabasco, Campeche y Península de Yucatán. Boletin Asociacion Mexicana Geologos Petroleros, 2, 453–460.

    Google Scholar 

  • Davison, T. M., Collins, G. S., Elbeshausen, D., Wünnemann, K., & Kearsley, A. (2011). Numerical modeling of oblique hypervelocity impacts on strong ductile targets. Meteoritics Planetary Science, 46(10), 1510–1524.

    Article  Google Scholar 

  • Ebbing, J., Janle, P., Koulouris, J., & Milkereit, B. (2001). 3D gravity modelling of the Chicxulub impact structure. Planetary Space Science., 49, 599–609.

    Article  Google Scholar 

  • Ekholm, A. G., & Melosh, H. J. (2001). Crater features diagnostic of oblique impacts: The size and position of the central peak. Geophysical Research Letters, 28, 623–626.

    Article  Google Scholar 

  • Elbra, T., & Pesonen, L. J. (2011). Physical properties of the Yaxcopoil-1 deep drill core, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science, 46(11), 1640–1652.

    Article  Google Scholar 

  • Escobar-Sanchez, J. E., & Urrutia-Fucugauchi, J. (2010). Chicxulub crater post-impact hydrothermal activity-evidence from Paleocene carbonates in the Santa Elena borehole. Geofísica Internacional, 49(2), 97–106.

    Article  Google Scholar 

  • Ferreira, F. J. F., de Souza, J., Bongiolo, A. B. S., & de Castro, L. G. (2013). Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78, J33–J41.

    Article  Google Scholar 

  • French, C. D. & Schenk, C. J. (2004). Map showing geology, oil and gas fields, and geologic provinces of the Caribbean region. US Geological Survey Open-File Report 97-470-K, CD-ROM.

  • Gulick, S., Morgan, J., Mellett, C. L., Green, S. L., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, M., Ferriere, L., Gebhardt, C., Goto, K., Jones, H., Kring, D., Lofi, J., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo, M., Riller, U., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K., Xiao, L., & Zylberman, W. (2017). Site M0077: Post impact sedimentary rocks. In J. Morgan, S. Gulick, C. L. Mellett & S. L. Green (Eds.), Proceedings of the International Ocean Discovery Program (Vol. 364, pp. 1–35). https://doi.org/10.14379/iodp.proc.364.105.2017.

  • Gulick, S. P. S., Barton, P. J., Christeson, G. L., Morgan, J. V., McDonald, M., Mendoza-Cervantes, K., Pearson, Z. F., Surendra, A., Urrutia-Fucugauchi, J., Vermeesch, P. M., & Warner, M. R. (2008). Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater. Nature Geoscience, 1, 131–135.

    Article  Google Scholar 

  • Gulick, S. P. S., Christeson, G. L., Barton, P. J., Grieve, R. A. F., Morgan, J. V., & Urrutia-Fucugauchi, J. (2013). Geophysical characterization of the Chicxulub impact crater. Reviews of Geophysics, 51, 31–52. https://doi.org/10.1002/rog.20007

    Article  Google Scholar 

  • Hildebrand, A. R. et al. (1998). Mapping Chicxulub crater structure with gravity and seismic reflection data. In M. M. Graddy, R. Hutchinson, G. J. H. McCall & D. A. Rotherby (Eds.), Meteorites: Flux with time and impact effects (Vol. 140, pp. 153–173). Geological Society London Special Publication.

  • Hildebrand, A. R., Penfield, G. T., Kring, D. A., Pilkington, M., Camargo-Zanoguera, A., Jacobsen, S. B., & Boynton, W. V. (1991). Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19, 867–871.

    Article  Google Scholar 

  • Hinze, W. J., Von Freese, R. B., & Saad, A. H. (2013). Gravity and magnetic exploration (p. 512). Cambridge University Press.

    Google Scholar 

  • Kring, D. A., Horz, L., Zurcher, L., & Urrutia Fucugauchi, J. (2004). Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub scientific drilling project, Yaxcopoil, Mexico. Meteoritics Planetary Science, 39, 879–897.

    Article  Google Scholar 

  • Kring, D. A., Tikoo, S. M., Schmieder, M., Riller, U., Rebolledo-Vieyra, M., Simpson, S. L., Osinski, G. R., Gattacceca, J., Wittmann, A., Verhagen, C. M., Cockell, C. S., Coolen, M. J. L., Longstaffe, F. J., Gulick, S. P. S., Morgan, J. V., Bralower, T. J., Chenot, E., Christeson, G. L., Claeys, P., … Yamaguchi, K. E. (2020). Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 6, eaaz3053.

    Article  Google Scholar 

  • Lopez-Ramos, E. (1976). Geological summary of the Yucatan peninsula. In A. E. M. Nairn & F. G. Stehli (Eds.), The Ocean Basins and Margins, The Gulf of Mexico and the Caribbean (Vol. 3, pp. 257–282). Plenum.

    Google Scholar 

  • Ma, G. Q., Du, X. J., Li, L. L., & Meng, L. S. (2012). Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal. Applied Geophysics, 9(4), 468–474.

    Article  Google Scholar 

  • Marson, I., & Klingele, E. E. (1993). Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11), 1588–1595. https://doi.org/10.1190/1.1443374

    Article  Google Scholar 

  • Mayr, S. I., Wittmann, A., Burkhardt, H., Popov, Y., Romushkevich, R., Bayuk, I., Heidinger, P., & Wilhelm, H. (2008). Integrated interpretation of physical properties of rocks of the borehole Yaxcopoil‐1 (Chicxulub impact structure). Journal Geophysical Research: Solid Earth, 113(B7).

  • Melosh, H. J. (1989). Impact cratering: A geologic process (p. 245). Oxford University Press.

    Google Scholar 

  • Melosh, H. J., & Ivanov, B. A. (1999). Impact crater collapse. Annual Reviews Earth Planetary Science, 27, 385–415.

    Article  Google Scholar 

  • Milligan, P. R., & Gunn, P. J. (1997). Enhancement and presentation of airborne geophysical data. AGSO Journal of Australian Geology and Geophysics, 17(2), 63–75.

    Google Scholar 

  • Morgan, J., et al. (1997). Size and morphology of the Chicxulub impact crater. Nature, 390, 472–476.

    Article  Google Scholar 

  • Morgan, J., Christeson, G., & Zelt, C. (2002). Testing the resolution of a 3D velocity tomogram across the Chicxulub crater. Tectonophysics, 355, 215–226.

    Article  Google Scholar 

  • Morgan, J., Gulick, S., Mellett, C. L., & Green, S. L. (Eds.). (2017). Proceedings of the International Ocean Discovery Program, vol. 364, pp. 1–35. https://doi.org/10.14379/iodp.proc.364.105.2017.

  • Morgan, J., Warner, M., Collins, G. S., Melosh, H. J., & Christenson, G. L. (2000). Peak-ring formation in large impact craters: Geophysical constraints from Chicxulub. Earth Planetary Science Letters, 183, 347–354.

    Article  Google Scholar 

  • Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G. S., Coolen, M. J. L., Ferriere Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Leber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., … Zylberman, W. (2016). The formation of peak rings in large impact craters. Science, 354, 878–882.

    Article  Google Scholar 

  • Morgan, J. V., Warner, M. R., Collins, G. S., Grieve, R. A. F., Christeson, G. L., Gulick, S. P. S., & Barton, P. J. (2011). Full waveform tomographic images of the peak ring at the Chicxulub impact crater. Journal Geophysical Research Solid Earth, 116(B6), B06303.

    Article  Google Scholar 

  • Nabighian, M. N. (1972). The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

    Article  Google Scholar 

  • Ortiz-Aleman, C., Martin, R., Urrutia-Fucugauchi, J., Orozco, M., & Nava-Flores, M. (2021). Imaging the Chicxulub central crater zone from large-scale seismic acoustic wave propagation and gravity modeling. Pure and Applied Geophysics, 178, 55–77. https://doi.org/10.1007/s00024-020-02638-2

    Article  Google Scholar 

  • Ortiz-Aleman, C., & Urrutia-Fucugauchi, J. (2010). Aeromagnetic anomaly modeling of central zone structure and magnetic sources in the Chicxulub crater. Physics of the Earth Planetary Interiors., 179, 127–138. https://doi.org/10.1016/j.pepi.2010.01.007

    Article  Google Scholar 

  • Penfield, G. T. & Camargo-Zanoguera, A. (1981). Definition of a major igneous zone in the central Yucatán platform with aeromagnetics and gravity, in Technical Program, Abstracts and Bibliographies, 51st Annual Meeting, p.37, Society of Exploration Geophysicists, Tulsa, Oklahoma.

  • Pierazzo, E., & Melosh, H. J. (2000). Understanding oblique impacts from experiments, observations, and modeling. Annual Reviews Earth Planetary Sciences, 98, 10–96.

    Google Scholar 

  • Pilkington, M., Ames, D. E., & Hildebrand, A. R. (2004). Magnetic mineralogy of the Yaxcopoil-1 core, Chicxulub. Meteoritics Planetary Science, 39(6), 831–841.

    Article  Google Scholar 

  • Pilkington, M., & Hildebrand, A. R. (2000). Three-dimensional magnetic imaging of the Chicxulub crater. Journal Geophysical Research, 105, 23479–23491.

    Article  Google Scholar 

  • Pilkington, M., Hildebrand, A. R., & Ortiz-Aleman, C. (1994). Gravity and magnetic field modeling and structure of the Chicxulub crater, Mexico. Journal Geophysical Research, 99, 13147–13162.

    Article  Google Scholar 

  • Pilkington, M., & Tschirhart, V. (2017). Practical considerations in the use of edge detectors for geologic mapping using magnetic data. Geophysics, 82, J1–J8.

    Article  Google Scholar 

  • Popov, Y., Romushkevich, R., Bayuk, I., Korobkov, D., Mayr, S., Burkhardt, H., & Wilhelm, H. (2004). Physical properties of rocks from the upper part of the Yaxcopoil-1 drill hole, Chicxulub Crater. Meteoritics Planetary Science, 39(6), 799–812.

    Article  Google Scholar 

  • Reid, A. B., & Thurston, J. B. (2014). The structural index in gravity and magnetic interpretation: Errors uses and abuses. Geophysics, 79(4), J61–J66. https://doi.org/10.1190/geo2013-0235.1

    Article  Google Scholar 

  • Riller, U., et al. (2018). Rock fluidization during peak-ring formation of large impact structures. Nature, 562, 511–518.

    Article  Google Scholar 

  • Roest, W. R., & Pilkington, M. (1993). Identifying remanent magnetization effects on in magnetic data. Geophysics, 58, 653–659.

    Article  Google Scholar 

  • Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57, 116–125.

    Article  Google Scholar 

  • Salem, A. (2010). Interpretation of magnetic data using analytic signal derivatives. Geophysical Prospecting, 53(1), 75–82.

    Article  Google Scholar 

  • Salguero-Hernández, E., Pérez-Cruz, L., & Urrutia-Fucugauchi, J. (2020). Seismic attribute analysis of Chicxulub impact crater. Acta Geophysica, 68, 627–640.

    Article  Google Scholar 

  • Schmieder, M., Kring, D. A., Goderis, S., Claeys, P., Coolen, M. J. L., Wittmann, A. & IODP–ICDP Expedition 364 Science Party (2017). Secondary sulfides in hydrothermally altered impactites and basement rocks of the Chicxulub peak ring—A preliminary survey. 80th Ann. Meet. Metereological Society, Lunar Planetary Conference, 1987.

  • Schulte, P., et al. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene Boundary. Science, 327, 1214–1218.

    Article  Google Scholar 

  • Schultz, P. H., & Anderson, R. R. (1996). Asymmetry of the Manson impact structure: Evidence for impact angle and direction. Geological Society of America Special Paper, 302, 397–417.

    Google Scholar 

  • Schultz, P. H., & D’Hondt, S. (1996). Cretaceous–Tertiary (Chicxulub) impact angle and its consequences. Geology, 24, 963–967.

    Article  Google Scholar 

  • Sharpton, V. L., Burke, K., Camargo, A., Hall, S. A., Lee, S., Marin, L. E., Suarez, G., Quezada, J. M., Spudis, P. D., & Urrutia-Fucugauchi, J. (1993). Chicxulub multiring impact basin: Size and other characteristics derived from gravity analysis. Science, 261, 1564–1567.

    Article  Google Scholar 

  • Sharpton, V. L., Dalrymple, G., Marin, L., Ryder, G., Schuraytz, B., & Urrutia-Fucugauchi, J. (1992). New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary. Nature, 359, 819–821.

    Article  Google Scholar 

  • Silva, J. B. C., & Barbosa, V. C. F. (2003). 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions. Geophysics, 68(6), 1962–1968.

    Article  Google Scholar 

  • Smith, R. S., & Salem, A. (2005). Imaging the depth, structure and susceptibility from magnetic data: The advanced source parameter imaging method. Geophysics, 70(4), L31–L38. https://doi.org/10.1190/1.1990219.GPYSA70016-8033

    Article  Google Scholar 

  • Talwani, M., & Heirtzler, J. R. (1964). Computation of magnetic anomalies caused by two-dimensional structures of arbitrary shape. In: Computers in the mineral industries, Part I, Stanford University Publication, Geological Sciences, 464–480.

  • Talwani, M., Worzel, J. L., & Landisman, M. (1959). Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. Journal of Geophysical Research, 64(1), 49–59. https://doi.org/10.1029/JZ064i001p00049

    Article  Google Scholar 

  • Thompson, D. T. (1982). EULDPH—A new technique for making computer assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Article  Google Scholar 

  • Urrutia-Fucugauchi, J., Camargo-Zanoguera, A., Pérez-Cruz, L., & Pérez-Cruz, G. (2011). The Chicxulub multiring impact crater, Yucatan carbonate platform, Mexico. Geofisica Internacional, 50, 99–127.

    Google Scholar 

  • Urrutia Fucugauchi, J., Chavez Aguirre, J. M., Perez Cruz, L., & de la Rosa, J. L. (2008). Impact ejecta and carbonate sequence in the eastern sector of Chicxulub crater. Comptes Rendus Geosciences, 341, 801–810. https://doi.org/10.1016/j.crte.2008.09.001

    Article  Google Scholar 

  • Urrutia-Fucugauchi, J., Marin, L., & Sharpton, V. L. (1994). Reverse polarity magnetized melt rocks from the Cretaceous/Tertiary Chicxulub structure, Yucatan Peninsula, Mexico. Tectonophysics, 237, 105–112.

    Article  Google Scholar 

  • Urrutia-Fucugauchi, J., Marin, L., & Trejo-Garcia, A. (1996). UNAM scientific drilling program of Chicxulub impact structure: Evidence of a 300-km crater diameter. Geophysical Research Letters, 23, 1565–1568.

    Article  Google Scholar 

  • Urrutia-Fucugauchi, J., Morgan, J., Stoeffler, D., & Claeys, P. (2004). The Chicxulub scientific drilling project. Meteoritics Planetary Science, 39, 787–790.

    Article  Google Scholar 

  • Verduzco, B., Fairhead, J. D., Green, C. M., & Mackenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116–119.

    Article  Google Scholar 

  • Verhagen, C. M., Tikoo, S., Gattacceca, J., Schmieder, M., Rochette, P. & Kring, D. (2021). Unraveling the magnetic history of peak ring granitoid rocks from the Chicxulub impact structure. 52th Lunar Planetary Science Conference, Houston (abstract).

  • Vermeesch, P. M., & Morgan, J. V. (2008). Structural uplift beneath the Chicxulub impact structure. Journal Geophysical Resarch, 113, B07103. https://doi.org/10.1029/2007/JB005393

    Article  Google Scholar 

  • Vermeesch, P. M., Morgan, J. V., Christeson, G. L., Barton, P. J., & Surendra, A. (2009). Three-dimensional joint inversion of travel and gravity data across the Chicxulub impact crater. Journal Geophysical Research, 114, BO2105.

    Article  Google Scholar 

  • Wallis, D., Burchell, M. J., Cook, A. C., Solomon, C. J., & McBride, N. (2005). Azimuthal impact directions from oblique impact crater morphology. Monthly Notices of the Royal Astronomical Society, 359(3), 1137–1149.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the comments by the journal reviewers and editor Dr. Valentine O. Mikhailov, which have been most useful in improving the paper. The study is part of the Chicxulub Crater Research Program. We thank Marysol Valdés, Araxi Urrutia, Rafael Venegas and Miguel Angel Díaz for assistance. This is contribution IICEAC-21-0015.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Urrutia-Fucugauchi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urrutia-Fucugauchi, J., Arellano-Catalán, O., Pérez-Cruz, L. et al. Chicxulub Crater Joint Gravity and Magnetic Anomaly Analysis: Structure, Asymmetries, Impact Trajectory and Target Structures. Pure Appl. Geophys. 179, 2735–2756 (2022). https://doi.org/10.1007/s00024-022-03074-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03074-0

Keywords

Navigation