Skip to main content
Log in

A Generalized 2.5-D Time-Domain Seismic Wave Equation to Accommodate Various Elastic Media and Boundary Conditions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The 2.5-D seismic wave numerical simulation method employs point sources from 2-D geological models, enabling the calculation of point source wavefields at pseudo-2-D computational cost. We present herein a generalized 2.5-D first-order time-domain governing equation to model seismic wave propagation in different (acoustic, elastic isotropic, and anisotropic) media, then derive different formulae that incorporate topographic free-surface and fluid–solid interfaces. Furthermore, by assigning different model parameters from point to point, accommodating different boundary conditions, and applying the finite difference approach, we achieve the numerical simulation of seismic wave propagation with just one computer program. Comparisons with 3-D analytic and numerical solutions obtained using different full-space homogeneous models (acoustic, elastic isotropic, and anisotropic) verify the correctness of the 2.5-D method. Comparison of the results with a 3-D pseudospectral method show that the proposed 2.5-D method can simulate seismic wave propagation in various media with different boundary conditions. In addition, unlike the problems encountered when using 2-D numerical solutions for real 3-D applications, the 2.5-D method can be employed directly as a forward modeling method in seismic reverse-time migration and an efficient wavefield conversion tool between practical point source data and artificial line source data for 2-D seismic full waveform inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aki, K., & Richard, P. G. (1980). Quantitative seismology: Theory and methods (Vol. 1). W. H. Freeman.

    Google Scholar 

  • Auer, L., Nuber, A. M., Greenhalgh, S. A., Maurer, H., & Marelli, S. (2013). A critical appraisal of asymptotic 3D-to-2D data transformation in full-waveform seismic crosshole tomography. Geophysics, 78, R235–R247.

    Article  Google Scholar 

  • Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440.

    Article  Google Scholar 

  • Baker, B., & Roecker, S. (2014). A full waveform tomography algorithm for teleseismic body and surface waves in 2.5 dimensions. Geophysical Journal International, 198, 1775–1794.

    Article  Google Scholar 

  • Baysal, E., Kosloff, D., & Sherwood, J. (1983). Reverse time migration. Geophysics, 48, 1514–1524.

    Article  Google Scholar 

  • Bouchon, M., & Coutant, O. (1994). Calculation of synthetic seismograms in a laterally varying medium by the boundary element discrete wave number method. Bulletin of the Seismological Society of America, 84, 1869–1881.

    Google Scholar 

  • Christensen, N. I. (1984). The magnitude, symmetry and origin of upper mantle anisotropy based on fabric analyses of ultramafic tectonites. Geophysical Journal of the Royal Astronomical Society, 76, 89–111.

    Article  Google Scholar 

  • Crampin, S. (1985). Evaluation of anisotropy by shear-wave splitting. Geophysics, 50, 142–152.

    Article  Google Scholar 

  • Crampin, S., Chesnokov, E. M., & Hipkin, R. G. (1984). Seismic anisotropy-the state of the art: II. Geophysical Journal of the Royal Astronomical Society, 76(1), 1–16.

    Article  Google Scholar 

  • Dai, W., Wang, X., & Schuster, G. (2011). Least-squares migration of multisource data with a deblurring filter. Geophysics, 76, R135–R146.

    Article  Google Scholar 

  • de Groot-Hedlin, C. D., & Orcutt, J. A. (2001). Excitation of t-phase by seafloor scattering. The Journal of the Acoustical Society of America, 109(5), 1944–1954.

    Article  Google Scholar 

  • de Hoop, A. T., & van der Hijden, J. H. M. T. (1983). Generation of acoustic waves by an impulsive line source in a fluid/solid configuration with a plane boundary. The Journal of the Acoustical Society of America, 74(1), 333–342.

    Article  Google Scholar 

  • Doyon, B., & Giroux, B. (2014). Practical aspects of 2.5D frequency-domain finite-difference modelling of viscoelastic waves. In: 84th Annual International Meeting, SEG, Expanded Abstracts, 3482–3486.

  • Faccioli, E., Maggio, F., Paolucci, R., & Quarteroni, A. (1997). 2D and 3D elastic wave propagation by a pseudo spectral domain decomposition method. Journal of Seismology, 1, 237–251.

    Article  Google Scholar 

  • Fornberg, B. (1988). The pseudospectral method: Accurate representation of interfaces in elastic wave calculations. Geophysics, 53, 625–637.

    Article  Google Scholar 

  • Furumura, T., & Takenaka, H. (1996). 2.5-D modelling of elastic waves using the pseudo-spectral method. Geophysical Journal International, 124, 820–832.

    Article  Google Scholar 

  • Furumura, T., Kennett, B. L. N., & Takenaka, H. (1998). Parallel 3-D pseudospectral simulation of seismic wave propagation. Geophysics, 63, 279–288.

    Article  Google Scholar 

  • Gelius, L. J. (1995). Generalized acoustic diffraction tomography. Geophysical Prospecting, 43, 3–29.

    Article  Google Scholar 

  • Greaves, R. J., & Stephen, R. A. (2000). Low-grazing-angle monostatic acoustic reverberation from rough and heterogeneous seafloors. The Journal of the Acoustical Society of America, 108(3), 1013–1025.

    Article  Google Scholar 

  • Heibig, K., & Thomsen, L. (2005). 75-plus years of anisotropy in exploration and reservoir seismic: A historical review of concepts and methods. Geophysics, 70, 9–25.

    Article  Google Scholar 

  • Hesthaven, J. S., & Warburton, T. (2008). Nodal discontinuous Galerkin methods: algorithms, analysis and applications, Vol. 54 of texts in applied mathematics. Springer.

    Book  Google Scholar 

  • Hixon, R. (1997). Evaluation of a high-accuracy MacCormack-type scheme using benchmark problems. Journal of Computational Acoustics, 6, 291–305.

    Article  Google Scholar 

  • Hixon, R., & Turkel, E. (2000). Compact implicit MacCormack-type schemes with high accuracy. Journal of Computational Physics, 158, 51–70.

    Article  Google Scholar 

  • Igel, H., Mora, P., & Riollet, B. (1995). Anisotropic wave propagation through finite-difference grids. Geophysics, 60, 1203–1216.

    Article  Google Scholar 

  • Jamet, G., Guennou, C., Guillon, L., Mazoyer, C., & Royer, J.-Y. (2013). T-wave generation and propagation: A comparison between data and spectral element modeling. The Journal of the Acoustical Society of America, 134(4), 3376–3385.

    Article  Google Scholar 

  • Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral-element method for 3-D seismic wave propagation. Geophysical Journal International, 139, 806–822.

    Article  Google Scholar 

  • Kristeková, M., Kristek, J., Moczo, P., & Day, S. M. (2006). Misfit criteria for quantitative comparison of seismograms. Bulletin of the Seismological Society of America, 96(5), 1836–1850.

    Article  Google Scholar 

  • Kristeková, M., Kristek, J., & Moczo, P. (2009). Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals. Geophysical Journal International, 178(2), 813–825.

    Article  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1959). Fluid mechanics (2nd ed.). Pergamon Press.

    Google Scholar 

  • Li, Y. E., & Demanet, L. (2016). Full-waveform inversion with extrapolated low-frequency data. Geophysics, 81, R339–R348.

    Article  Google Scholar 

  • Lisitsa, V., & Vishnevskiy, D. (2010). Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophysical Prospecting, 58, 619–635.

    Article  Google Scholar 

  • Martin, M. A., & Thomas, L. D. (1987). Shear-wave birefringence: A new tool for evaluating fractured reservoirs. TLE, 6, 22–28.

    Google Scholar 

  • Moczo, P., Kristek, J., & Galis, M. (2014). The finite-difference modelling of earthquake motions. Cambridge University Press.

    Book  Google Scholar 

  • Novais, A., & Santos, L. T. (2005). 2.5D finite-difference solution of the acoustic wave equation. Geophysical Prospecting, 53, 523–531.

    Article  Google Scholar 

  • Okal, E. A. (2008). The generation of T waves by earthquakes. Advanced in Geophysics, 49, 1–65.

    Article  Google Scholar 

  • Padilla, F., Billy, M. D., & Quentin, G. (1999). Theoretical and experimental studies of surface waves on solid-fluid interfaces when the value of the fluid sound velocity in located between the shear and the longitudinal ones in the solid. The Journal of the Acoustical Society of America, 106(2), 666–673.

    Article  Google Scholar 

  • Pratt, R. G., & Worthington, M. H. (1988). The application of diffraction tomography to crosshole seismic data. Geophysics, 53, 1284–1294.

    Article  Google Scholar 

  • Pratt, R. G., & Worthington, M. H. (1990). Acoustic wave equation inverse theory applied to multisource cross-hole tomography: Part I, acoustic wave-equation method. Geophysical Prospecting, 38, 287–310.

    Article  Google Scholar 

  • Robertsson, J. O. A., & Levander, A. (1995). A numerical study of seafloor scattering. The Journal of the Acoustical Society of America, 97(3), 3532–3546.

    Article  Google Scholar 

  • Roecker, S., Baker, B., & McLaughlin, J. (2010). A finite-difference algorithm for full waveform teleseismic tomography. Geophysical Journal International, 181, 1017–1040.

    Google Scholar 

  • Saenger, E. H., & Bohlen, T. (2004). Finite-difference modelling of viscoelastic and anisotropic wave propagation using rotated staggered grid. Geophysics, 609, 583–591.

    Article  Google Scholar 

  • Seriani, G., & Priolo, E. (1994). A spectral element method for acoustic wave simulation in heterogeneous media. Finite Elements in Analysis and Design, 16, 337–348.

    Article  Google Scholar 

  • Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research, 96, 16429–16454.

    Article  Google Scholar 

  • Sinclair, C., Greenhalgh, S. A., & Zhou, B. (2007). 2.5D modelling of elastic waves in transversely isotropic media using the spectral element method. Exploration Geophysics, 38, 225–234.

    Article  Google Scholar 

  • Sinclair, C., Greenhalgh, S. A., & Zhou, B. (2012). Wavenumber sampling issues in 2.5D frequency domain seismic modelling. Pure and Applied Geophysics, 169, 141–156.

    Article  Google Scholar 

  • Song, Z. M., Williamson, P. R., & Pratt, R. G. (1995). Frequency-domain acoustic-wave modeling and inversion of crosshole data: part ii—Inversion method, synthetic experiments and real-data results. Geophysics, 60, 796–809.

    Article  Google Scholar 

  • Su, M., Ren, Z., & Zhang, Z. (2020). An adi finite volume element method for a viscous wave equation with variable coefficients. Computer Modeling in Engineering & Sciences, 123, 739–776.

    Article  Google Scholar 

  • Sun, Y. C., & Zhang, W. (2018). 3D Seismic wavefield modeling in generally anisotropic media with a topographic free surface by the curvilinear grid finite-difference method. Bulletin of the Seismological Society of America, 108, 1287–1301.

    Article  Google Scholar 

  • Sun, Y. C., Zhang, W., & Chen, X. F. (2016). Seismic-wave modeling in the presence of surface topography in 2D general anisotropic media by a curvilinear grid finite-difference method. Bulletin of the Seismological Society of America, 106, 1036–1054.

    Article  Google Scholar 

  • Takenaka, H., & Kennett, B. L. N. (1996). A 2.5-D time-domain elastodynamic equation for plane-wave incidence. Geophysical Journal International, 125, F5–F9.

    Article  Google Scholar 

  • Tam, C. K., & Webb, J. C. (1993). Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics, 107, 262–281.

    Article  Google Scholar 

  • Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.

    Article  Google Scholar 

  • Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1985). Numerical grid generation-foundations and applications. North Holland.

    Google Scholar 

  • Tsvankin, I., Gaiser, J., Grechka, V., van der Baan, M., & Thomsen, L. (2010). Seismic anisotropy in exploration and reservoir characterization: An overview. Geophysics, 75, 75A15-75A29.

    Article  Google Scholar 

  • Vavryčuk, V. (2007). Asymptotic green’s function in homogeneous anisotropic viscoelastic media. Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences, 463, 2689–2707.

    Article  Google Scholar 

  • Vigh, D., Jiao, K., Watts, D., & Sun, D. (2014). Elastic full-waveform inversion application using multicomponent measurements of seismic data collection. Geophysics, 79, R63–R77.

    Article  Google Scholar 

  • Virieux, J., & Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics, 74, 127–152.

    Article  Google Scholar 

  • Wang, Y. H. (2015). Frequencies of the Ricker wavelet. Geophysics, 80, A31–A37.

    Article  Google Scholar 

  • Williamson, P. R., & Pratt, R. G. (1995). A critical review of the acoustic wave modelling procedure in 2.5 dimensions. Geophysics, 60, 591–595.

    Article  Google Scholar 

  • Wu, R. S., & Toksöz, M. N. (1987). Diffraction tomography and multisource holography applied to seismic imaging. Geophysics, 52, 11–25.

    Article  Google Scholar 

  • Xiong, J. L., Lin, Y., Abubakar, A., & Habashy, T. M. (2013). 2.5-D forward and inverse modelling of full-waveform elastic seismic survey. Geophysical Journal International, 193, 938–948.

    Article  Google Scholar 

  • Yang, S., Bai, C., & Greenhalgh, S. (2020). Seismic wavefield modelling in two-phase media including undulating topography with the modified Biot/squirt model by a curvilinear-grid finite difference method. Geophysical Prospecting, 68(2), 591–614.

    Article  Google Scholar 

  • Zhang, W., & Chen, X. F. (2006). Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophysical Journal International, 167, 337–353.

    Article  Google Scholar 

  • Zhang, H., Liu, M., Shi, Y., Yuen, D. A., Yan, Z., & Liang, G. (2007). Toward an automated parallel computing environment for geosciences. Physics of the Earth and Planetary Interiors, 163, 2–22.

    Article  Google Scholar 

  • Zhang, W., Shen, Y., & Zhao, L. (2012a). Three-dimensional anisotropic seismic wave modelling in spherical coordinates by a collocated-grid finite-difference method. Geophysical Journal International, 188, 1359–1381.

    Article  Google Scholar 

  • Zhang, W., Zhang, Z. G., & Chen, X. F. (2012b). Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophysical Journal International, 190, 358–378.

    Article  Google Scholar 

  • Zhang, Y., Duan, L., & Xie, Y. (2015). A stable and practical implementation of least-squares reverse time migration. Geophysics, 80, V23–V31.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (1998a). A damping method for the computation of the 2.5-D Green’s function for arbitrary acoustic media. Geophysical Journal International, 133, 111–120.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (1998b). Composite boundary-valued solution of the 2.5D Green’s function for arbitrary acoustic media. Geophysics, 63, 1813–1823.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (2006). An adaptive wavenumber sampling strategy for 2.5D seismic-wave modelling in the frequency-domain. Pure and Applied Geophysics, 163, 1399–1416.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (2011a). 3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach. Geophysical Journal International, 184, 507–526.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (2011b). Computing the sensitivity kernels for 2.5-D seismic waveform inversion in heterogeneous, anisotropic media. Pure and Applied Geophysics, 168, 1729–1748.

    Article  Google Scholar 

  • Zhou, B., Greenhalgh, S. A., & Hansruedi, M. (2012). 2.5-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid technique. Computer and Geosciences, 39, 18–33.

    Article  Google Scholar 

  • Zhou, B., Moosoo, W., Greenhalgh, S., & Liu, X. (2020). Generalized stiffness reduction method to remove the artificial edge-effects for seismic wave modelling in elastic anisotropic media. Geophysical Journal International, 220, 1394–1408.

    Article  Google Scholar 

  • Zhu, J., & Dorman, J. (2000). Two-dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary-orientation–finite-element modelling. Geophysics, 65, 934–942.

    Article  Google Scholar 

  • Zhu, J., & Popovics, J. S. (2004). Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading. The Journal of the Acoustical Society of America, 116(4), 2101–2110.

    Article  Google Scholar 

Download references

Acknowledgements

This research is based on work supported by the Khalifa University of Science and Technology under award no. CIRA-2018-48 and the National Science Foundation of China (NSFC, no. 41830101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-ying Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Coefficient Matrices for Elastic Anisotropic Medium

Equations (3) can be rewritten in the following form:

$$ \begin{aligned} \left( {\begin{array}{*{20}c} {\dot{\tilde{v}}_{x} } \\ {\dot{\tilde{v}}_{y} } \\ {\dot{\tilde{v}}_{z} } \\ \end{array} } \right) & = \left( {\begin{array}{*{20}c} {\rho^{ - 1} } & 0 & 0 & 0 & 0 & 0 \\ 0 & {\rho^{ - 1} } & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {\rho^{ - 1} } & 0 & 0 \\ \end{array} } \right)\partial_{x} \left( {\begin{array}{*{20}c} {\tilde{\sigma }_{xx} } \\ {\tilde{\sigma }_{xy} } \\ {\tilde{\sigma }_{yy} } \\ {\tilde{\sigma }_{xz} } \\ {\tilde{\sigma }_{yz} } \\ {\tilde{\sigma }_{zz} } \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & {\rho^{ - 1} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\rho^{ - 1} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {\rho^{ - 1} } \\ \end{array} } \right)\partial_{z} \left( {\begin{array}{*{20}c} {\tilde{\sigma }_{xx} } \\ {\tilde{\sigma }_{xy} } \\ {\tilde{\sigma }_{yy} } \\ {\tilde{\sigma }_{xz} } \\ {\tilde{\sigma }_{yz} } \\ {\tilde{\sigma }_{zz} } \\ \end{array} } \right) \\ & + \left( {\begin{array}{*{20}c} 0 & {ik_{y} \rho^{ - 1} } & 0 & 0 & 0 & 0 \\ 0 & 0 & {ik_{y} \rho^{ - 1} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {ik_{y} \rho^{ - 1} } & 0 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\tilde{\sigma }_{xx} } \\ {\tilde{\sigma }_{xy} } \\ {\tilde{\sigma }_{yy} } \\ {\tilde{\sigma }_{xz} } \\ {\tilde{\sigma }_{yz} } \\ {\tilde{\sigma }_{zz} } \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} {\rho^{ - 1} s_{x} } \\ {\rho^{ - 1} s_{y} } \\ {\rho^{ - 1} s_{z} } \\ \end{array} } \right). \\ \end{aligned} $$
(66)

Similarly, Eq. (4) becomes

$$ \left( {\begin{array}{*{20}c} {\dot{\tilde{\sigma }}_{xx} } \\ {\dot{\tilde{\sigma }}_{xy} } \\ {\dot{\tilde{\sigma }}_{yy} } \\ {\dot{\tilde{\sigma }}_{xz} } \\ {\dot{\tilde{\sigma }}_{yz} } \\ {\dot{\tilde{\sigma }}_{zz} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {c_{11} } & {c_{16} } & {c_{15} } \\ {c_{16} } & {c_{66} } & {c_{56} } \\ {c_{12} } & {c_{26} } & {c_{25} } \\ {c_{15} } & {c_{56} } & {c_{55} } \\ {c_{14} } & {c_{46} } & {c_{45} } \\ {c_{13} } & {c_{36} } & {c_{35} } \\ \end{array} } \right)\partial_{x} \left( {\begin{array}{*{20}c} {\tilde{v}_{x} } \\ {\tilde{v}_{y} } \\ {\tilde{v}_{z} } \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} {c_{15} } & {c_{14} } & {c_{13} } \\ {c_{56} } & {c_{46} } & {c_{36} } \\ {c_{25} } & {c_{24} } & {c_{23} } \\ {c_{55} } & {c_{45} } & {c_{35} } \\ {c_{45} } & {c_{44} } & {c_{34} } \\ {c_{35} } & {c_{34} } & {c_{33} } \\ \end{array} } \right)\partial_{z} \left( {\begin{array}{*{20}c} {\tilde{v}_{x} } \\ {\tilde{v}_{y} } \\ {\tilde{v}_{z} } \\ \end{array} } \right) + \mathrm{i}k_{y} \left( {\begin{array}{*{20}c} {c_{16} } & {c_{12} } & {c_{14} } \\ {c_{66} } & {c_{26} } & {c_{46} } \\ {c_{26} } & {c_{22} } & {c_{24} } \\ {c_{56} } & {c_{25} } & {c_{45} } \\ {c_{46} } & {c_{24} } & {c_{44} } \\ {c_{36} } & {c_{23} } & {c_{34} } \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\tilde{v}_{x} } \\ {\tilde{v}_{y} } \\ {\tilde{v}_{z} } \\ \end{array} } \right). $$
(67)

Accordingly, we obtain the following coefficient matrices for Eq. (6):

$$ {\mathbf{A}}^{(\mathrm{S})} = \left( {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{M}}_{1} } & {{\mathbf{M}}_{2} } \\ {{\mathbf{S}}_{1} } & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{S}}_{4} } & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right), \, {\mathbf{B}}^{(\mathrm{S})} = \left( {\begin{array}{*{20}c} {\mathbf{0}} & {\mathbf{0}} & {{\mathbf{M}}_{3} } \\ {{\mathbf{S}}_{2} } & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{S}}_{5} } & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right), \, {\mathbf{C}}^{(\mathrm{S})} = \left( {\begin{array}{*{20}c} {\mathbf{0}} & {{\mathbf{M}}_{4} } & {{\mathbf{M}}_{5} } \\ {{\mathbf{S}}_{3} } & {\mathbf{0}} & {\mathbf{0}} \\ {{\mathbf{S}}_{6} } & {\mathbf{0}} & {\mathbf{0}} \\ \end{array} } \right), $$
(68)

where

$$ \begin{aligned} {\mathbf{M}}_{1} & = \left( {\begin{array}{*{20}c} {\rho^{ - 1} } & 0 & 0 \\ 0 & {\rho^{ - 1} } & 0 \\ 0 & 0 & 0 \\ \end{array} } \right), \, {\mathbf{M}}_{2} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ {\rho^{ - 1} } & 0 & 0 \\ \end{array} } \right), \, {\mathbf{M}}_{3} = \left( {\begin{array}{*{20}c} {\rho^{ - 1} } & 0 & 0 \\ 0 & {\rho^{ - 1} } & 0 \\ 0 & 0 & {\rho^{ - 1} } \\ \end{array} } \right), \, \\ {\mathbf{M}}_{4} & = \left( {\begin{array}{*{20}c} 0 & {ik_{y} \rho^{ - 1} } & 0 \\ 0 & 0 & {ik_{y} \rho^{ - 1} } \\ 0 & 0 & 0 \\ \end{array} } \right), \, {\mathbf{M}}_{5} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & {ik_{y} \rho^{ - 1} } & 0 \\ \end{array} } \right), \, {\mathbf{S}}_{1} = \left( {\begin{array}{*{20}c} {c_{11} } & {c_{16} } & {c_{15} } \\ {c_{16} } & {c_{66} } & {c_{56} } \\ {c_{12} } & {c_{26} } & {c_{25} } \\ \end{array} } \right), \, \\ {\mathbf{S}}_{2} & = \left( {\begin{array}{*{20}c} {c_{15} } & {c_{14} } & {c_{13} } \\ {c_{56} } & {c_{46} } & {c_{36} } \\ {c_{25} } & {c_{24} } & {c_{23} } \\ \end{array} } \right), \, {\mathbf{S}}_{3} = \mathrm{i}k_{y} \left( {\begin{array}{*{20}c} {c_{16} } & {c_{12} } & {c_{14} } \\ {c_{66} } & {c_{26} } & {c_{46} } \\ {c_{26} } & {c_{22} } & {c_{24} } \\ \end{array} } \right), \, {\mathbf{S}}_{4} = \left( {\begin{array}{*{20}c} {c_{15} } & {c_{56} } & {c_{55} } \\ {c_{14} } & {c_{46} } & {c_{45} } \\ {c_{13} } & {c_{36} } & {c_{35} } \\ \end{array} } \right), \, \\ {\mathbf{S}}_{5} & = \left( {\begin{array}{*{20}c} {c_{55} } & {c_{45} } & {c_{35} } \\ {c_{45} } & {c_{44} } & {c_{34} } \\ {c_{35} } & {c_{34} } & {c_{33} } \\ \end{array} } \right), \, {\mathbf{S}}_{6} = \mathrm{i}k_{y} \left( {\begin{array}{*{20}c} {c_{56} } & {c_{25} } & {c_{45} } \\ {c_{46} } & {c_{24} } & {c_{44} } \\ {c_{36} } & {c_{23} } & {c_{34} } \\ \end{array} } \right){.} \\ \end{aligned} $$
(69)

Appendix 2: Coefficient Matrices for Acoustic Medium

We combine Eqs. (9) and (10) into the following form:

$$ \begin{aligned} \left( \begin{gathered} \dot{\tilde{v}}_{{\text{x}}} \hfill \\ \dot{\tilde{v}}_{y} \hfill \\ \dot{\tilde{v}}_{z} \hfill \\ {\dot{\tilde{P}}} \hfill \\ \end{gathered} \right) & = \left( \begin{gathered} { 0 0 0 } - \rho^{ - 1} \hfill \\ { 0 0 0 0} \hfill \\ { 0 0 0 0} \hfill \\ - K{ 0 0 0} \hfill \\ \end{gathered} \right)\partial_{x} \left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ {\tilde{P}} \hfill \\ \end{gathered} \right) + \left( \begin{gathered} {0 0 0 0} \hfill \\ {0 0 0 0} \hfill \\ {0 0 0 } - \rho^{ - 1} \hfill \\ {0 0 } - K { 0} \hfill \\ \end{gathered} \right)\partial_{z} \left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ {\tilde{P}} \hfill \\ \end{gathered} \right) \\ & + \left( \begin{gathered} {0 0 0 0} \hfill \\ {0 0 0 } - \mathrm{i}k_{y} \rho^{ - 1} \hfill \\ {0 0 0 }0 \hfill \\ {0 } - \mathrm{i}k_{y} K \, 0{ 0} \hfill \\ \end{gathered} \right)\left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ {\tilde{P}} \hfill \\ \end{gathered} \right) + \left( \begin{gathered} { 0} \hfill \\ { 0} \hfill \\ { 0} \hfill \\ \dot{s}(t)\delta ({\mathbf{x}} - {\mathbf{x}}_{s} ) \hfill \\ \end{gathered} \right). \\ \end{aligned} $$
(70)

Consequently, we obtain the following coefficient matrices for Eq. (12):

$$ {\mathbf{A}}^{(\mathrm{W})} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & { - \rho^{ - 1} } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ { - K} & 0 & 0 & 0 \\ \end{array} } \right),{\mathbf{B}}^{(\mathrm{W})} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - \rho^{ - 1} } \\ 0 & 0 & { - K} & 0 \\ \end{array} } \right),{\mathbf{C}}^{(\mathrm{W})} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - \mathrm{i}k_{y} \rho^{ - 1} } \\ 0 & 0 & 0 & 0 \\ 0 & { - \mathrm{i}k_{y} K} & 0 & 0 \\ \end{array} } \right). $$
(71)

Appendix 3: Coefficient Matrices for the Free Surface of Elastic Medium

Combing Eqs. 26 and 27, we obtain

$$ \begin{aligned} \left( \begin{gathered} \dot{\tilde{v}}_{{\text{x}}} \hfill \\ \dot{\tilde{v}}_{y} \hfill \\ \dot{\tilde{v}}_{z} \hfill \\ \dot{\tilde{\sigma }}_{xx} \hfill \\ \dot{\tilde{\sigma }}_{xy} \hfill \\ \dot{\tilde{\sigma }}_{yy} \hfill \\ \end{gathered} \right) & = \left( \begin{gathered} {0 0 0 } \rho^{ - 1} { 0 } 0 \hfill \\ {0 0 0 0 }\rho^{ - 1} \, 0 \hfill \\ {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} { 0 } 0 \hfill \\ c_{11} \, c_{16} \, c_{15} { 0 0 } 0 \hfill \\ c_{16} \, c_{66} \, c_{56} { 0 0 } 0 \hfill \\ c_{12} \, c_{26} \, c_{25} { 0 0 } 0 \hfill \\ \end{gathered} \right)\partial_{x} \left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ \tilde{\sigma }_{xx} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yy} \hfill \\ \end{gathered} \right) + \left( \begin{gathered} {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} { 0 } 0 \hfill \\ {0 0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} \, 0 \hfill \\ {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )^{2} \rho^{ - 1} { 0 } 0 \hfill \\ c_{15} \, c_{14} \, c_{13} { 0 0 } 0 \hfill \\ c_{56} \, c_{46} \, c_{36} { 0 0 } 0 \hfill \\ c_{25} \, c_{24} \, c_{23} { 0 0 } 0 \hfill \\ \end{gathered} \right)\partial_{z} \left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ \tilde{\sigma }_{xx} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yy} \hfill \\ \end{gathered} \right) \\ & + \left( \begin{gathered} {0 0 0 } 0 \, \mathrm{i}k_{y} \rho^{ - 1} \, 0 \hfill \\ {0 0 0 0 0 } \mathrm{i}k_{y} \rho^{ - 1} \hfill \\ {0 0 0 (}\partial_{xx} {\text{z}}_{{0}} )\rho^{ - 1} { (}\partial_{x} {\text{z}}_{{0}} )ik_{y} \rho^{ - 1} \, 0 \hfill \\ \mathrm{i}k_{y} c_{16} \, \mathrm{i}k_{y} c_{12} \, \mathrm{i}k_{y} c_{14} { 0 0 }0 \hfill \\ \mathrm{i}k_{y} c_{66} \, \mathrm{i}k_{y} c_{26} \, \mathrm{i}k_{y} c_{46} { 0 0 }0 \hfill \\ \mathrm{i}k_{y} c_{26} \, \mathrm{i}k_{y} c_{22} \, \mathrm{i}k_{y} c_{24} { 0 0 }0 \hfill \\ \end{gathered} \right)\left( \begin{gathered} \tilde{v}_{x} \hfill \\ \tilde{v}_{y} \hfill \\ \tilde{v}_{z} \hfill \\ \tilde{\sigma }_{xx} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yy} \hfill \\ \end{gathered} \right) + \left( \begin{gathered} 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ 0 \hfill \\ \end{gathered} \right). \\ \end{aligned} $$
(72)

We thus obtain the following coefficient matrices for Eq. (29):

$$ \begin{aligned} {\mathbf{A}}^{{({\text{AS}})}} & = \left( \begin{gathered} {0 0 0 } \, \rho^{ - 1} { 0 } 0 \hfill \\ {0 0 0 0 }\rho^{ - 1} \, 0 \hfill \\ {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} { 0 } 0 \hfill \\ c_{11} \, c_{16} \, c_{15} { 0 0 } 0 \hfill \\ c_{16} \, c_{66} \, c_{56} { 0 0 } 0 \hfill \\ c_{12} \, c_{26} \, c_{25} { 0 0 } 0 \hfill \\ \end{gathered} \right),\begin{array}{*{20}c} {} & {} \\ \end{array} {\mathbf{B}}^{{({\text{AS}})}} = \left( \begin{gathered} {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} { 0 } 0 \hfill \\ {0 0 0 0 (}\partial_{x} {\text{z}}_{{0}} )\rho^{ - 1} \, 0 \hfill \\ {0 0 0 (}\partial_{x} {\text{z}}_{{0}} )^{2} \rho^{ - 1} { 0 } 0 \hfill \\ c_{15} \, c_{14} \, c_{13} { 0 0 } 0 \hfill \\ c_{56} \, c_{46} \, c_{36} { 0 0 } 0 \hfill \\ c_{25} \, c_{24} \, c_{23} { 0 0 } 0 \hfill \\ \end{gathered} \right), \\ {\mathbf{C}}^{{({\text{AS}})}} & = \left( \begin{gathered} {0 0 0 } 0 \, \mathrm{i}k_{y} \rho^{ - 1} \, 0 \hfill \\ {0 0 0 0 0 } \mathrm{i}k_{y} \rho^{ - 1} \hfill \\ {0 0 0 (}\partial_{xx} {\text{z}}_{{0}} )\rho^{ - 1} { (}\partial_{x} {\text{z}}_{{0}} )ik_{y} \rho^{ - 1} \, 0 \hfill \\ \mathrm{i}k_{y} c_{16} \, \mathrm{i}k_{y} c_{12} \, \mathrm{i}k_{y} c_{14} { 0 0 } 0 \hfill \\ \mathrm{i}k_{y} c_{66} \, \mathrm{i}k_{y} c_{26} \, \mathrm{i}k_{y} c_{46} { 0 0 } 0 \hfill \\ \mathrm{i}k_{y} c_{26} \, \mathrm{i}k_{y} c_{22} \, \mathrm{i}k_{y} c_{24} { 0 0 } 0 \hfill \\ \end{gathered} \right), \\ \end{aligned} $$
(73)

Appendix 4: Coefficient Matrices for a Fluid–Solid Interface

Combining Eqs. 40, 41, and 42, we obtain the following form:

$$ \begin{gathered} \left( \begin{gathered} \dot{\tilde{v}}_{x}^{(\mathrm{W})} \hfill \\ \dot{\tilde{v}}_{x}^{(\mathrm{S})} \hfill \\ \dot{\tilde{v}}_{y}^{(\mathrm{S})} \hfill \\ \dot{\tilde{v}}_{z}^{(\mathrm{S})} \hfill \\ {\dot{\tilde{P}}} \hfill \\ \dot{\tilde{\sigma }}_{xy} \hfill \\ \dot{\tilde{\sigma }}_{yz} \hfill \\ \end{gathered} \right) = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & { - \rho_{w}^{ - 1} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{x} z_{0}^{2} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{x} z_{0} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ { - K} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\partial_{x} \left( \begin{gathered} \tilde{v}_{x}^{(\mathrm{W})} \hfill \\ \tilde{v}_{x}^{(\mathrm{S})} \hfill \\ \tilde{v}_{y}^{(\mathrm{S})} \hfill \\ \tilde{v}_{z}^{(\mathrm{S})} \hfill \\ {\tilde{P}} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yz} \hfill \\ \end{gathered} \right) + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{\rho_{s}^{ - 1} \partial_{x} z_{0} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - \rho_{s}^{ - 1} \partial_{x} z_{0} } & {\rho_{s}^{ - 1} } \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ { - K\partial_{x} z_{0} } & {K\partial_{x} z_{0} } & 0 & { - K} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\partial_{z} \left( \begin{gathered} \tilde{v}_{x}^{(\mathrm{W})} \hfill \\ \tilde{v}_{x}^{(\mathrm{S})} \hfill \\ \tilde{v}_{y}^{(\mathrm{S})} \hfill \\ \tilde{v}_{z}^{(\mathrm{S})} \hfill \\ {\tilde{P}} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yz} \hfill \\ \end{gathered} \right) \hfill \\ + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - 2\rho_{s}^{ - 1} \partial_{x} z_{0} \partial_{xx} z_{0} }}{{(\partial_{x} z_{0}^{2} + 1)^{2} }}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{xx} z_{0} (1 - \partial_{x} z_{0}^{2} )}}{{(\partial_{x} z_{0}^{2} + 1)^{2} }}} & 0 & 0 \\ 0 & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{36} } & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{23} } & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{34} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right)\left( \begin{gathered} \tilde{v}_{x}^{(\mathrm{W})} \hfill \\ \tilde{v}_{x}^{(\mathrm{S})} \hfill \\ \tilde{v}_{y}^{(\mathrm{S})} \hfill \\ \tilde{v}_{z}^{(\mathrm{S})} \hfill \\ {\tilde{P}} \hfill \\ \tilde{\sigma }_{xy} \hfill \\ \tilde{\sigma }_{yz} \hfill \\ \end{gathered} \right) + \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right). \hfill \\ \end{gathered} $$
(74)

We then obtain the following coefficient matrices for Eq. 44:

$$ {\mathbf{A}}^{(WS)} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & { - \rho_{w}^{ - 1} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{x} z_{0}^{2} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{x} z_{0} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ { - K} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right), \, {\mathbf{B}}^{(WS)} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{\rho_{s}^{ - 1} \partial_{x} z_{0} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & { - \rho_{s}^{ - 1} \partial_{x} z_{0} } & {\rho_{s}^{ - 1} } \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} }}{{\partial_{x} z_{0}^{2} + 1}}} & 0 & 0 \\ { - K\partial_{x} z_{0} } & {K\partial_{x} z_{0} } & 0 & { - K} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right), $$
(75)
$$ {\mathbf{C}}^{(WS)} = \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - 2\rho_{s}^{ - 1} \partial_{x} z_{0} \partial_{xx} z_{0} }}{{(\partial_{x} z_{0}^{2} + 1)^{2} }}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & {\frac{{ - \rho_{s}^{ - 1} \partial_{xx} z_{0} (1 - \partial_{x} z_{0}^{2} )}}{{(\partial_{x} z_{0}^{2} + 1)^{2} }}} & 0 & 0 \\ 0 & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{36} } & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{23} } & { - \mathrm{i}k_{y} (\partial_{x} z_{0}^{2} + 1)c_{34} } & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right). $$
(76)

Appendix 5: Analytical Solutions in 3-D Homogeneous Medium

The analytical solutions in homogeneous acoustic media are given by

$$ F(r,t) = {\text{IFFT}}\left( {\mathrm{i} \cdot w \cdot R(w) \cdot G(w)} \right), $$
(77)

where \(R(w)\) is the Fourier transform of the Ricker wavelet function (Wang, 2015),

$$ R(w) = \frac{{2w^{2} }}{{\sqrt \pi w_{{\text{p}}}^{3} }}\exp \left( {\frac{{ - w^{2} }}{{w_{{\text{p}}}^{2} }} + \mathrm{i}wt_{0} } \right). $$
(78)

\(G(w)\) is the Green’s function in acoustic media (Aki & Richard, 1980).

The analytical solutions in homogeneous isotropic and VTI media are given by

$$ v_{kl} (x,y,z,t) = {\text{IFFT}}\left( {\mathrm{i} \cdot w \cdot R(w) \cdot G_{kl} ({\mathbf{x}},w)} \right), $$
(79)

where \(w_{{\text{p}}}\) is the domain frequency corresponding to the maximum amplitude and t0 is the delay time. IFFT the is fast inverse Fourier transform. \(G_{kl} ({\mathbf{x}},w)\) is an asymptotic Green’s function in homogeneous anisotropic medium (Eq. 72, Vavryčuk, 2007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sb., Zhou, B. & Bai, Cy. A Generalized 2.5-D Time-Domain Seismic Wave Equation to Accommodate Various Elastic Media and Boundary Conditions. Pure Appl. Geophys. 178, 2999–3025 (2021). https://doi.org/10.1007/s00024-021-02775-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02775-2

Keywords

Navigation