Skip to main content
Log in

A Review of High Impact Weather for Aviation Meteorology

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Adapted from Meckalski et al. 2007). © American Meteorological Society. Used with permission

Fig. 5

(Adapted from Tucker et al. 2009)

Fig. 6
Fig. 7

Adapted from Hubbert et al. (2018), © American Meteorological Society (AMS). Used with permission

Fig. 8
Fig. 9

(Adapted from Sillmann 2013a, b). © American Meteorological Society. Used with permission

Fig. 10
Fig. 11
Fig. 12

(Permission by G. Toth)

Fig. 13

(Adapted from Pearson and Sharman 2017). © American Meteorological Society. Used with permission

Fig. 14

(Adapted from McGovern et al. 2017). © American Meteorological Society. Used with permission

Similar content being viewed by others

References

  • Ahijevych, D., Pinto, J. O., Williams, J. K., & Steiner, M. (2016). Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Weather Forecasting, 31, 581–599. https://doi.org/10.1175/waf-d-15-0113.1.

    Google Scholar 

  • Alapaty, K., Seaman, N. L., Niyogi, D. S., & Hanna, A. F. (2001). Assimilating surface data to improve the accuracy of atmospheric boundary layer simulations. Journal of Applied Meteorology, 40, 2068–2082.

    Google Scholar 

  • Albers, H. W. (1977). ICAS items. Bulletin American Meteorology Society, 58, 342–343.

    Google Scholar 

  • Allen, C. T., Haupt, S. E., & Young, G. S. (2007). Source characterization with a genetic algorithm–coupled dispersion–backward model incorporating SCIPUFF. Journal of Applied Meteorology Climatology, 46, 273–287.

    Google Scholar 

  • Anderson, J. L. (1996). Selection of initial conditions for ensemble forecasts in a simple perfect model framework. Journal of Atmospheric Science, 53, 22–36.

    Google Scholar 

  • Ansmann, A., Mattis, I., Wandinger, U., Wagner, F., Reichardt, J., & Deshler, T. (1997). Evolution of the pinatubo aerosol: Raman lidar observations of particle optical depth, effective radius, mass, and surface area over Central Europe at 53.4°N. Journal of Atmospheric Science, 54, 2630–2641.

    Google Scholar 

  • Appleman, H. (1953). The formation of exhaust condensation trails by jet aircraft. Bulletin American Meteorology Society, 34, 14–20.

    Google Scholar 

  • Argyle, E. M., Gourley, J. J., Flamig, Z. L., Hansen, T., & Manross, K. (2017). Toward a User-Centered Designof a Weather Forecasting Decision-Support Tool. Bulletin of the American Meteorological Society, 98, 373–382. https://doi.org/10.1175/BAMS-D-16-0031.1.

    Google Scholar 

  • Auger, L., Dupont, O., Hagelin, S., Brousseau, P., & Brovelli, P. (2015). AROME–NWC: A new nowcasting tool based on an operational mesoscale forecasting system. Quarterly Journal Royal Meteorological Society, 141, 1603–1611.

    Google Scholar 

  • Austin, G. L., Dionne, P., & Roch, M. (1987). On the interaction between radar and satellite image nowcasting systems and mesoscale numerical models. In Proceedings mesoscale analysis and forecasting, Vancouver, BC, Canada, European Space Agency, pp. 225–228.

  • Bailey, M. E., Isaac, G. A., Driedger, N., & Reid, J. (2009). Comparison of nowcasting methods in the context of high-impact weather events for the Canadian Airport Nowcasting Project. In International symposium on nowcasting and very short range forecasting, 30 August–4 September 2009, Whistler, British Columbia.

  • Bailey, M. E., Isaac, G. A., Gultepe, I., Heckman, I., & Reid, J. (2014). Adaptive blending of model and observations for automated short-range forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games. Journal of Pure and Applied Geophysics, 171, 257–276. https://doi.org/10.1007/s00024-012-0553-x.

    Google Scholar 

  • Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., et al. (2014). Lidar-measured wind profiles: The missing link in the global observing system. Bulletin American Meteorology Society, 95, 543–564.

    Google Scholar 

  • Bankert, R. L. (1994). Cloud classification of avhrr imagery in maritime regions using a probabilistic neural network. Journal of Applied Meteorology, 33, 909–918.

    Google Scholar 

  • Bankert, R. L., Hadjimichael, M., Kuciauskas, A. P., Thompson, W. T., & Richardson, K. (2004). Remote cloud ceiling assessment using data-mining methods. Journal of Applied Meteorology, 43, 1929–1946.

    Google Scholar 

  • Bankert, R. L., Mitrescu, C., Miller, S. D., & Wade, R. H. (2009). Comparison of GOES cloud classification algorithms employing explicit and implicit physics. Journal of Applied Meteorology Climatology, 48, 1411–1421.

    Google Scholar 

  • Banta, R., Pichugina, Y., Brewer, A., James, E., Olson, J., Benjamin, S., et al. (2017). Evaluating and improving NWP forecast models for the future: How the needs of offshore wind energy can point the way. Bulletin American Meteorology Society. https://doi.org/10.1175/bams-d-16-0310.

    Google Scholar 

  • Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D. P., & Hogan, R. J. (2011). A 3D cloud construction algorithm for the EarthCARE satellite mission. Quarterly Journal of the Royal Meteorological Society, 137, 1042–1058. https://doi.org/10.1002/qj.824.

    Google Scholar 

  • Bates, T. S., Quinn, P. K., Johnson, J. E., Corless, A., Brechtel, F. J., Stalin, S. E., et al. (2013). Measurements of atmospheric aerosol vertical distributions above Svalbard, Norway, using unmanned aerial systems (UAS). Atmosphere Measure Technology, 6, 2115–2120.

    Google Scholar 

  • Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., & Greenwald, T. (2010). Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. Journal of Applied Meteorology Climatology, 49, 181–202.

    Google Scholar 

  • Bedka, K. M., & Khlopenkov, K. (2016). A probabilistic multispectral pattern recognition method for detection of overshooting cloud tops using passive satellite imager observations. Journal of Applied Meteorology Climatology, 55, 1983–2005. https://doi.org/10.1175/JAMC-D-15-0249.1.

    Google Scholar 

  • Bedka, K. M., Velden, C. S., Petersen, R. A., Feltz, W. F., & Mecikalski, J. R. (2009). Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA wind profiler observations. Journal of Applied Meteorology Climatology, 48, 1542–1552.

    Google Scholar 

  • Behne, D. (2008). NAM-WRF verification of subtropical jet turbulence. Electronics Journal of Operational Meteorology, Paper 2008-EJ3. http://www.nwas.org/ej/pdf/2008-EJ3.pdf.

  • Bélair, S., Lacarrère, P., Noilhan, J., Masson, V., & Stein, J. (1998). High-resolution simulation of surface and turbulent fluxes during HAPEX-MOBILHY. Monthly Weather Review, 126, 2234–2253.

    Google Scholar 

  • Benjamin, S. G., et al. (2009). Rapid Refresh/RUC project technical review. NOAA/ESRL/GSD Internal Review. http://ruc.noaa.gov/pdf/RR-RUC-TR_11_3_2009.pdf.

  • Benjamin, S. G., Jamison, B. D., Moninger, W. R., Sahm, S. R., Schwartz, B. E., & Schlatter, T. W. (2010). Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Monthly Weather Review, 138, 1319–1343.

    Google Scholar 

  • Benjamin, S. G., Moninger, W. R., Smith, T. L., Jamison, B. D., & Schwartz, B. E. (2006a). TAMDAR aircraft impact experiments with the rapid update cycle. In Preprints, 10th Symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Atlanta, GA, Amer. Meteor. Soc., 9.8. http://ams.confex.com/ams/pdfpapers/.

  • Benjamin, S. G., Moninger, W. R., Smith, T. L., Jamison, B. D., & Schwartz, B. E. (2006b) Impact of TAMDAR humidity, temperature, and wind observations in RUC parallel experiments. In Preprints, 12th Conference on aviation, range, and aerospace meteorology, Atlanta, GA, American Meteorology Society, p. 4.5.

  • Benjamin, S. G., Moninger, W. R., Smith, T. L., Jamison, B. D., Szoke, E. J., & Schlatter, T. W. (2007). 2006 TAMDAR impact experiment results for RUC humidity, temperature, and wind forecasts. In Preprints, 11th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface, San Antonio, TX, Amer. Meteor. Soc., 9.2. http://ams.confex.com/ams/pdfpapers/119903.pdf.

  • Benjamin, S., Weygandt, S., Brown, J., Hu, M., Alexander, C., Smirnova, T., et al. (2016). A North American hourly assimilation and model forecast cycle: The rapid refresh. Monthly Weather Review, 144(4), 1669–1694. https://doi.org/10.1175/mwrd-15-0242.1.

    Google Scholar 

  • Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M., et al. (2007). Intercomparison of single-column numerical models for the prediction of radiation fog. Journal of Applied Meteorology Climatology, 46, 504–521.

    Google Scholar 

  • Berndt, E., Elmer, N., Schultz, L., & Molthan, A. (2018). A methodology to determine recipe adjustments for multispectral composites derived from next-generation advanced satellite imagers. Journal of Atmosphere Oceanic Technology, 2, 22. https://doi.org/10.1175/JTECH-D-17-0047.1.

    Google Scholar 

  • Bernstein, B. C., McDonough, F., Politovich, M. K., Brown, B. G., Ratvasky, T. P., Miller, D. R., et al. (2005). Current icing potential: Algorithm description and comparison with aircraft observations. Journal of Applied Meteorology, 44, 969–986.

    Google Scholar 

  • Bernstein, B. C., Wolff, C. A., & Minnis, P. (2006). Practical application of NASA-Langley advanced satellite products to in-flight icing nowcasts. In Proc. 44th AIAA Aerospace Sci. Mtg. & Exhibit, Reno, NV, January 9–12, AIAA-2006-1220, p. 18.

  • Beswick, K., Baumgardner, D., Gallagher, M., Volz-Thomas, A., Nedelec, P., Wang, K.-Y., et al. (2014). The backscatter cloud probe – a compact low-profile autonomous optical spectrometer. Atmos. Meas. Tech., 7, 1443–1457. https://doi.org/10.5194/amt-7-1443-2014.

    Google Scholar 

  • Bianco, L., Cimini, D., Marzano, F. S., & Ware, R. (2005). Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling. Journal of Atmospheric and Oceanic Technology, 22(7), 949–965.

    Google Scholar 

  • Bilbro, J., Fichtl, G., Fitzjarrald, D., Krause, M., & Lee, R. (1984). Airborne Doppler lidar wind field measurements. Bulletin American Meteorology Society, 65, 348–359.

    Google Scholar 

  • Bilbro, J. W., & Vaughan, W. W. (1978). Wind field measurement in the nonprecipitous regions surrounding severe storms by an airborne pulsed Doppler lidar system. Bulletin American Meteorology Society, 59, 1095–1100.

    Google Scholar 

  • Black, A. W., & Mote, T. L. (2015). Characteristics of winter-precipitation-related transportation fatalities in the United States. Weather Climate Society, 7, 133–145.

    Google Scholar 

  • Bluestein, H. B., French, M. M., PopStefanija, I., Bluth, R. T., & Knorr, J. B. (2010). A mobile, phased-array Doppler radar for the study of severe convective storms: The MWR-05XP. Bulletin American Meteorology Society, 91, 579–600.

    Google Scholar 

  • Bluestein, H. B., Houser, J. B., French, M. M., Snyder, J. C., Emmitt, G. D., PopStefanija, I., et al. (2014). Observations of the boundary layer near tornadoes and in supercells using a mobile, collocated, pulsed doppler lidar and radar. Journal of Atmosphere Oceanic Technology, 31, 302–325.

    Google Scholar 

  • Blumstein, D., Tournier, B., Cayla, F. R., Phupin, R. F. T., Bull, C., & Ponce, G. (2007). In-flight performance of the infrared atmospheric sounding interferometer (IASI) on MetOp-A. Atmospheric and environmental remote sensing data processing and utilization III: Readiness for GEOSS. In M. D. Goldberg et al. (Eds.) International Society for Optical Engineering (SPIE Proceedings (vol. 6684, p. 66840).

  • Boer, G. D., Palo, S., Argrow, B., LoDolce, G., Mack, J., Gao, R.-S., et al. (2017). The pilatus unmanned aircraft system for lower atmospheric research. Atmosphere Measure Technology Discussion, 8, 11987–12023.

    Google Scholar 

  • Bott, A., Sievers, U., & Zdunkowski, W. (1990). A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. Journal of Atmospheric Science, 47, 2153–2166.

    Google Scholar 

  • Bottyán, Z., Tuba, Z., & Gyöngyösi, A. Z. (2016). Weather Forecasting System for the Unmanned AircraftSystems (UAS) Missions with the Special Regard to Visibility Prediction in Hungary. In L. Nádai & J. Padányi (Eds.), Critical Infrastructure Protection Research (Vol. 12). Cham: Springer. https://doi.org/10.1007/978-3-319-28091-2_2.

    Google Scholar 

  • Bottyán, Z., Wantuch, F., Gyöngyösi, A. Z., Tuba, Z., Hadobács, K., Kardos, P., et al. (2013). Development of a complex meteorological support system for UAVs. World Academy of Science, Engineering and Technology International Journal of Geology and Environment Engineering, 7(4), 646–651.

    Google Scholar 

  • Bravin, M., Strapp, J. W., & Mason, J. (2015). An investigation into location and convective lifecycle trends in an ice crystal icing engine database. Tech. rep., SAE Technical Paper 2015-01-2130, SAE International, Warrendale, Pennsylvania, USA. https://doi.org/10.4271/2015-01-2130.

  • Bright, D. R., Lack, S. A., & Sparks, J. A. (2016). A summary of turbulence forecasting techniques used by the national weather service. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 213–226). Berlin: Springer.

    Google Scholar 

  • Brooks, G. R., & Oder, A. (2004). Low level turbulence algorithm testing at-or-below 10,000 ft. In Preprints, 11th conference on aviation, range, and aerospace meteorology, Hyannis, MA, Amer. Meteor.Soc., P4.16. http://ams.confex.com/ams/pdfpapers/82122.pdf.

  • Brown, R. (1973). New indices to locate clear-air turbulence. Meteorological Magazine, 102, 347–361.

    Google Scholar 

  • Brown, B. G., Thompson, G., Bruintjes, R. T., Bullock, R., & Kane, T. (1997). Intercomparison of in-flight icing algorithms. Part II: Statistical verification results. Weather Forecasting, 12, 890–914.

    Google Scholar 

  • Browning, K. A. (1980). Local weather forecasting. Proceeding Royal Society of London, A371, 179–211.

    Google Scholar 

  • Burrows, W. R., Price, C., & Wilson, L. J. (2005). Warm season lightning probability prediction for Canada and the Northern United States. Weather Forecasting, 20, 971–988.

    Google Scholar 

  • Casadevall, T. J. (1994). The 1989–90 eruption of Redoubt volcano. Alaska: Impacts on aircraft operations. Journal of Volcanology and Geothermal Research, 62, 301–316.

    Google Scholar 

  • Chachere, C., & Pu, Z. (2018). Numerical simulations of an inversion fog event in the salt lake valley during the MATERHORN-fog field campaign. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1770-8.

    Google Scholar 

  • Chan, P. W. (2014). Performance and aviation applications of minisodars at Hong Kong International Airport. Meteorological Applications, 21, 62–73. https://doi.org/10.1002/met.1388.

    Google Scholar 

  • Chan, P. W. (2016). LIDAR-based turbulence intensity for aviation applications. In R. D. Sharman & T. P. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 193–209). Berlin: Springer.

    Google Scholar 

  • Chan, P. W., & Shao, A. M. (2007). Depiction of complex airflow near Hong Kong International Airport using a Doppler LIDAR with a two-dimensional wind retrieval technique. Meteorologische Zeitschrift, 16, 491–504.

    Google Scholar 

  • Chan, P. W., Shun, C. M., & Wu, K. C. (2006). Operational LIDARLIDAR-based system for automatic wind shear alerting at the Hong Kong International Airport. In 12th conference on aviation, range, & aerospace meteorology, American Meteorological Society, Atlanta, GA, USA, 29 January–2 February 2006.

  • Chuang, H.-Y., Mao, Y., & Zhou, B. (2019). R2O Transition of NCAR’s Icingand Turbulence Algorithms into NCEP’s Operations. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1975-x.

    Google Scholar 

  • Chandrasekar, V., Keránen, R., Lim, S., & Moisseev, D. (2013). Recent advances in classification of observations from dual polarization weather radars. Atmospheric Research, 119, 97–111.

    Google Scholar 

  • Chiodi, A. M., & Harrison, D. E. (2010). Characterizing warm-ENSO variability in the equatorial Pacific: An OLR perspective. Journal of Climate, 23, 2428–2439. https://doi.org/10.1175/2009JCLI3030.1.

    Google Scholar 

  • Chmielecki, R. M., & Raftery, A. E. (2011). Probabilistic visibility forecasting using bayesian model averaging. Monthly Weather Review, 139, 1626–1636.

    Google Scholar 

  • Cho, J. Y. N. (2015). Enhanced signal processing algorithms for the ASR-9 weather systems processor. Journal of Atmospheric and Oceanic Technology, 32, 1847–1859.

    Google Scholar 

  • Chun, H., Kim, J., Lee, D., Kim, S., Strahan, M., Pettegrew, B., et al. (2017). Research collaborations for better predictions of aviation weather hazards. Bulletin American Meteorology Society, 98, ES103–ES107. https://doi.org/10.1175/BAMS-D-17-0010.1.

    Google Scholar 

  • Clark, A. J., Gallus, W. A., Jr., Xue, M., & Kong, F. (2009). A comparison of precipitation forecast skill between small convection-permitting and large convection-parameterizing ensembles. Weather and Forecasting, 24, 1121–1140.

    Google Scholar 

  • Cohen, A. E., Cavallo, S. M., Coniglio, M. C., & Brooks, H. E. (2017). Evaluation of multiple planetary boundary layer parameterization schemes in Southeastern U.S. Cold Season severe weather environments. Weather and Forecasting, 32, 1857–1884.

    Google Scholar 

  • Cohn, S. A. (1995). Radar measurements of turbulent eddy dissipation rate in the troposphere: A comparison of techniques. Journal of Atmosphere Oceanic Technology, 12, 85–95.

    Google Scholar 

  • Colson, D., & Panofsky, H. A. (1965). An index of clear-air turbulence. Quarterly Journal of Royal Meteorology Society, 91, 507–513.

    Google Scholar 

  • Cook, L., Wood, B., Klein, A., Lee, R., & Memarzadeh, B. (2009). Analyzing the share of individual weather factors affecting NAS performance using the weather impacted traffic index. In AIAA 2009-7017. 9th AIAA aviation technology, integration, and operations conference (ATIO), Hilton Head, SC, September 2009. https://doi.org/10.2514/6.2009-7017.

  • Cornman, L. B. (2016). Airborne in situ measurements of turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 97–120). Berlin: Springer.

    Google Scholar 

  • Cornman, L. B., Morse, C. S., & Cunning, J. (1995). Real time estimation of atmospheric turbulence severity from in situ aircraft measurements. Journal of Aircraft, 32, 171–177.

    Google Scholar 

  • Cooper, W. A., Sand, W. R., Politovich, M. K., & Veal, D. L. (1984). Effects of icing on performance of a research aircraft. Journal of Aircraft, 21, 708–715.

    Google Scholar 

  • Dehghan, A., Hocking, W. K., & Srinivasan, R. (2014). Comparisons between multiple in situ aircraft measurements and radar in the troposphere. Journal of Atmospheric and Solar-Terrestrial, 118, 64–77.

    Google Scholar 

  • Del Genio, A. D., Yao, M.-S., & Jonas, J. (2007). Will moist convection be stronger in a warmer environment? Geophysical Research Letters, 34, L16703. https://doi.org/10.1029/2007gl030525.

    Google Scholar 

  • Deng, M., Mace, G. G., Wang, Z., & Okamoto, H. (2010). Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using CloudSat radar and CALIPSO lidar. Journal of Geophysics Research, 115, D00J15. https://doi.org/10.1029/2009jd013104.

    Google Scholar 

  • DeWekker, S. F. J., Godwin, K. S., Emmitt, G. D., & Greco, S. (2012). Airborne Doppler lidar measurements of valley flows in complex coastal terrain. Journal of Applied Meteorology Climatology, 51, 1558–1574.

    Google Scholar 

  • Dines, W. H. (1917). Meteorology and aviation. Monthly Weather Review, 45, 401. https://doi.org/10.1175/1520-0493(1917)45%3c401b:MAA%3e2.0.CO;2.

    Google Scholar 

  • Done, J., Davis, C. A., & Weisman, M. L. (2004). The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmosphere Science Letter, 5, 110–117.

    Google Scholar 

  • Donovan, M. F., Williams, E. R., Kessinger, C., Blackburn, G., Herzegh, P. H., Bankert, R. L., et al. (2008). The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations. Journal of Applied Meteorology Climatology, 47, 164–184.

    Google Scholar 

  • Dorman, C. E., Mejia, J. F., Korocin, D., & McEvoy, D. J. (2017). Worldwide marine fog occurrence and climatology. In R. Sugan (Ed.), A chapter in the book of marine fog: Challenges and advancements in observations, modeling, and forecasting. Berlin: Springer. https://doi.org/10.1007/978-3-319-45229-6_2.

    Google Scholar 

  • Doswell, C. A. (1986). Short-range forecasting. In P. Ray (Ed.), Mesoscale meteorology and forecasting (pp. 689–719). Genesco: American Meteor Society.

    Google Scholar 

  • Doswell, C. A. (1980). Synoptic-scale environments associated with high plains severe thunderstorms. Bulletin of American Meterological Society, 61, 1388–1400.

    Google Scholar 

  • Dupree, W., Morse, D., Chan, M., Tao, X., Iskenderian, H., Reiche, C., & Wolfson, M., et al. (2009). The 2008 CoSPA Forecast demonstration (collaborative storm prediction for aviation). 89th AMS annual meeting ARAM special symposium on weather—air traffic phoenix, AZ/11-15 January 2009. P1.1, p. 19.

  • Dutton, J. A., & Panofsky, H. A. (1970). Clear air turbulence: A mystery may be unfolding. Science, 167, 937–944.

    Google Scholar 

  • Eichinger, W. E., Cooper, D. I., Forman, P. R., Griegos, J., Osborn, M. A., Richter, D., et al. (1999). The development of a scanning raman water vapor lidar for boundary layer and tropospheric observations. Journal of Atmosphere Oceanic Technology, 16, 1753–1766.

    Google Scholar 

  • Eick, D. (2014) Turbulence related accidents and incidents. Presentation at NCAR Turbulence Impact Mitigation Workshop 2, 3–4 Sep 2014. https://ral.ucar.edu/sites/default/files/public/events/2014/turbulence-impact-mitigation-workshop-2/docs/eick-turbulencerelatedaccidents.pdf. Accessed 3 Jan 2019

  • Ellrod, G. P. (1985). Detection of high level turbulence using satellite imagery and upper air data. NOAA Tech. Memo. NESDIS 10, p. 30.

  • Ellrod, G. P., Connell, B. H., & Hillger, D. W. (2003). Improved detection of airborne volcanic ash using multispectral infrared satellite data. Journal of Geophysical Research, 108, 4356. https://doi.org/10.1029/2002jd002802.

    Google Scholar 

  • Ellrod, G. P., & Gultepe, I. (2007). Inferring low cloud base heights at night for aviation using satellite infrared and surface temperature data. Journal of Pure and Applied Geophysics, 164, 1193–1205.

    Google Scholar 

  • Ellrod, G. P., & Knapp, D. I. (1992). An objective clear-air turbulence forecasting technique: Verification and operational use. Weather Forecasting, 7, 150–165.

    Google Scholar 

  • Ellrod, G. P., & Pryor, K. (2019). Applications of Geostationary Satellite Data to Aviation. Pure Appl Geophys. https://doi.org/10.1007/s00024-018-1821-1.

    Google Scholar 

  • Ellrod, G. P., & Knox, J. A. (2010). Improvements to an operational clear-air turbulence diagnostic index by addition of a divergence trend term. Weather Forecasting, 25, 789–798.

    Google Scholar 

  • Ellrod, G. P., Lester, P. F., & Ehernberger, J. (2002). Clear air turbulence. In J. R. Holton, et al. (Eds.), Encyclopedia of the atmospheric sciences (pp. 393–403). Oxford: Academic.

    Google Scholar 

  • Ellrod, G.P., Knox, J.A., Lester, P.F., Ehernberger, L.J., 2015. Aviation: Clear Air Turbulence. In: Gerald R. North (editor-in-chief), J. Pyle and F. Zhang (Eds.), Encyclopedia of Atmospheric Sciences, 2nd edn, Vol 1, (pp. 177–186) Elsevier, Inc. https://doi.org/10.1016/B978-0-12-382225-3.00104-3.

  • Elmore, K. L., & Richman, M. B. (2001). Euclidean distance as a similarity metric for principal component analysis. Monthly Weather Review, 129, 540–549.

    Google Scholar 

  • Endlich, R. M. (1964). The mesoscale structure of some regions of clear-air turbulence. Journal of Applied Meteorology, 3, 261–276.

    Google Scholar 

  • FAA. (1988). Advisory circular on pilot wind shear guide. AFS-200. AC No: 00-54, p. 56.

  • FAA. (2017). Continued operational safety (COS) report. Special category light-sport aircraft, July 2004–Sep 2017, p. 50.

  • FAA-P-8740-40. (2008). Wind shear. HQ 101130, p. 8.

  • Fahey, T., Wilson, E., O’Loughlin, R., Thomas, M., & Klipfel, S. (2016). A history of weather reporting from aircraft and turbulence forecasting for commercial aviation. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 31–58). Berlin: Springer.

    Google Scholar 

  • Feingold, G., Cotton, W. R., Kreidenweis, S. M., & Davis, J. T. (1999). The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. Journal of Atmospheric Science, 56, 4100–4117.

    Google Scholar 

  • Ferrare, R. A., Melfi, S. H., Whiteman, D. N., Evans, K. D., Schmidlin, F. J., & Starr, D. O. (1995). A comparison of water vapor measurements made by Raman Lidar and radiosondes. Journal of Atmosphere Oceanic Technology, 12, 1177–1195.

    Google Scholar 

  • Ferrero, E., Mortarini, L., Manfrin, M., Solari, M., & Forza, R. (2014). Physical simulation of atmospheric microbursts. Journal of Geophysics Research Atmosphere, 119, 6292–6305. https://doi.org/10.1002/2013jd021243.

    Google Scholar 

  • Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. Journal of Atmosphere Science, 51, 249–280.

    Google Scholar 

  • Ferrier, B. S., Tao, W. K., & Simpson, J. (1995). A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. Journal of Atmosphere Science, 52, 1001–1033.

    Google Scholar 

  • Fischer, C., Montmerle, T., Berre, L., Auger, L., & Stefanescu, S. (2005a). Anover view of the variational assimilation in the ALADIN/France numerical weather-prediction system wave-driven circulation of the mesosphere. Quarterly Journal Royal Meteorological Society, 131, 3477–3492.

    Google Scholar 

  • Fischer, A. S., Terray, P., Guilyardi, E., Gualdi, S., & Delecluse, P. (2005b). Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. Journal of Climate, 18, 3428–3449.

    Google Scholar 

  • Fix, A. (2012). Tunable light sources for lidar applications. In U. Schumann (Ed.), Atmospheric physics—Background, methods, trends, prediction (pp. 509–527). Berlin: Springer.

    Google Scholar 

  • Folger, K., & Weissmann, M. (2014). Height correction of atmospheric motion vectors using satellite lidar observations from CALIPSO. Journal of Applied Meteorology Climatology, 53, 1809–1819.

    Google Scholar 

  • Fournier, G. (2006). Development of the Canadian aircraft meteorological data relay (AMDAR) program and plans for the future. In 10th symposium on integrated observing and assimilation systems for the atmosphere, oceans, and land surface, Atlanta, GA, Amer. Meteor. Soc. Annual Meeting. https://ams.confex.com/ams/pdfpapers. Accessed 3 Jan 2019

  • França, G. B., Almeida, M. V., Bonnet, S. M., & Albuquerque Neto, F. L. (2018). Nowcasting model of low wind profile based on neural network using SODAR data at Guarulhos Airport, Brazil. International Journal of Remote Sensing, 39(8), 2506–2517. https://doi.org/10.1080/01431161.2018.1425562.

    Google Scholar 

  • Free, M., & Sun, B. (2013). Time-Varying Biases in US total cloud cover data. Journal of Atmosphere Ocean Technology, 30, 2838–2849.

    Google Scholar 

  • Frehlich, R. G., & Sharman, R. (2010). Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data. Journal of Applied Meteorology Climatology, 49, 1149–1169. https://doi.org/10.1175/2010jamc2196.1.

    Google Scholar 

  • Fuertes, F. C., Iungo, G. V., & Porté-Agel, F. (2014). 3D turbulence measurements using three synchronous wind lidars: Validation against sonic anemometry. Journal of Atmosphere Oceanic Technology, 31, 1549–1556.

    Google Scholar 

  • Gao, F., Zhang, X., Jacobs, N. A., Huang, X.-Y., Zhang, X., & Childs, P. P. (2012). Estimation of TAMDAR observational error and assimilation experiments. Wea. Forecasting, 27, 856–877.

    Google Scholar 

  • Gerz, T., Holzäpfel, F., Gerling, W., Scharnweber, A., Frech, M., Wiegele, A., et al. (2009). The wake vortex prediction and monitoring system WSVBS—Part II: Performance and ATC integration at Frankfurt airport. Air Traffic Control Quarterly, 17(4), 323–346. https://doi.org/10.2514/atcq.17.4.323.

    Google Scholar 

  • Ghirardelli, J. E., & Glahn, B. (2010). The meteorological development laboratory’s aviation weather prediction system. Weather Forecasting, 25, 1027–1051.

    Google Scholar 

  • Gill, P. G. (2012). Objective verification of World Area Forecast Centre clear air turbulence forecasts. Meteorological Applications, 21, 3–11. https://doi.org/10.1002/met.1288.

    Google Scholar 

  • Gill, P. G., & Buchanan, P. (2014). An ensemble based turbulence forecasting system. Meteorological Applications, 21, 12–19. https://doi.org/10.1002/met.1373.

    Google Scholar 

  • Gillette, D. (1978). A wind tunnel simulation of the erosion of soil: Effects of soil texture, sandblasting, wind speed, and soil consolidation on the dust production. Atmospheric Environment, 12, 1735–1743.

    Google Scholar 

  • Glahn, H. R., & Lowry, D. A. (1972). The use of model output statistics (MOS) in objective weather forecasting. Journal of Applied Meteorology, 11, 1203–1211.

    Google Scholar 

  • Glahn, B., Schnapp, A. D., Ghirardelli, J. E., & Im, J. (2017). A LAMP–HRRR MELD for improved aviation guidance. Weather Forecasting, 32, 391–405.

    Google Scholar 

  • Glickman, T. S. (Ed.). (2000). Glossary of meteorology (2nd ed., p. 855). Geneseo: American Meteorological Society.

    Google Scholar 

  • Golding, B. W. (1998). Nimrod: A system for generating automated very short range forecasts. Meteorological Applications, 5, 1–16.

    Google Scholar 

  • Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D., et al. (2013). The GOES-R geostationary lightning mapper (GLM). Atmospheric Research, 125–126, 34–49.

    Google Scholar 

  • Goodman, C., & Griswold, J. (2017). Climate impacts on density altitude and aviation operations. Journal of Applied Meteorology Climatology, 57, 517–523. https://doi.org/10.1175/jamc-d-17-0126.1.

    Google Scholar 

  • Goodman, S. J., Gurka, J., DeMaria, M., Schmit, T. J., Mostek, A., Jedlovec, G., et al. (2012). The GOES-R proving ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bulletin American Meteorology Society, 93, 1029–1040.

    Google Scholar 

  • Gossard, E. E., Snider, J. B., Clothiaux, E. E., Martner, B., Gibson, J. S., Kropfli, R. A., et al. (1997). The potential of 8-mm radars for remotely sensing cloud drop size distributions. Journal of Atmosphere Oceanic Technology, 14, 76–87.

    Google Scholar 

  • Gottschall, J., & Peinke, J. (2008). How to improve the estimation of power curves for wind turbines. Environ. Res. Lett., 3, 7. https://doi.org/10.1088/1748-9326/3/1/015005.

    Google Scholar 

  • Grell, G. A., & Devenyi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysics Research Letters, 29(14), 1693. https://doi.org/10.1029/2002gl015311.

    Google Scholar 

  • Griffin, S. M., & Velden, C. S. (2018). Hazard avoidance products for convectively-induced turbulence in support of high-altitude global hawk aircraft missions. Pure Applied Geophysics. https://doi.org/10.1007/s00024-018-1772-6.

    Google Scholar 

  • Guedalia, D., & Bergot, T. (1994). Numerical forecasting of radiation fog. Part II: A comparison of model simulation with several observed fog events. Monthly Weather Review, 122, 1231–1246.

    Google Scholar 

  • Gultepe, I. (2015). Mountain weather: Observations and modeling. Advances in Geophysics, 56, 229–312.

    Google Scholar 

  • Gultepe, I., Agelin-Chaab, M., Komar, J., Elfstrom, G., Boudala, F., & Zhou, B. (2019). A meteorological supersite for aviation and cold weather applications. Pure Applied Geophysics. https://doi.org/10.1007/s00024-018-1880-3 (this issue).

    Google Scholar 

  • Gultepe, I., Fernando, H. J. S., Pardyjak, E. R., Hoch, S. W., Silver, Z., Creegan, E., et al. (2016). An overview of the MATERHORN fog project: Observations and predictability. Pure and Applied Geophysics, 173, 9. https://doi.org/10.1007/s00024-016-1374-0.

    Google Scholar 

  • Gultepe, I., & Heymsfield, A. J. (2016). Ice fog, ice clouds, and remote sensing; Introduction. Pure and Applied Geophysics, 173, 9. https://doi.org/10.1007/s00024-016-1380-2.

    Google Scholar 

  • Gultepe, I., Heymsfield, A. J., Field, P. R., & Axisa, D. (2017a). Ice-phase precipitation. Meteorological Monographs, 58, 6.1–6.36. https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0013.1.

    Google Scholar 

  • Gultepe, I., Heymsfield, A. J., Gallagher, M., Ickes, L., & Baumgardner, D. (2017b). Ice fog: The current state of knowledge and future challenges. Meteorological Monographs, 58, 4.1–4.24. https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0002.1.

    Google Scholar 

  • Gultepe, I., & Isaac, G. A. (2004). An analysis of cloud droplet number concentration (Nd) for climate studies: Emphasis on constant Nd. Quarterly Journal of Royal Meterological Society, 130(602), 2377–2390.

    Google Scholar 

  • Gultepe, I., Isaac, G. A., Joe, P., Kucera, P., Thériault, J., & Fisico, T. (2014a). Roundhouse (RND) mountain top research site: Measurements and uncertainties for winter alpine weather conditions. Journal of Pure and Applied Geophysics. https://doi.org/10.1007/s00024-012-0582-5.

    Google Scholar 

  • Gultepe, I., Kuhn, T., Pavolonis, M., Calvert, C., Gurka, J., Isaac, G. A., et al. (2014b). Ice fog in Arctic during FRAM-IF project: Aviation and nowcasting applications. Bulletin of American Meterological Society, 95, 211–226.

    Google Scholar 

  • Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new warm fog parameterization scheme for numerical weather prediction models. Journal of Applied Meteorology, 45, 1469–1480.

    Google Scholar 

  • Gultepe, I., Pawgoski, M., & Reid, J. (2007a). Using surface data to validate a satellite based fog detection scheme. Journal of Weather and Forecasting, 22, 444–456.

    Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007b). Fog research: A review of past achievements and future perspectives. Journal of Pure and Applied Geophysics, 164, 1121–1159.

    Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling (FRAM) field project. Bulletin of American Meteorological Society, 90, 341–359.

    Google Scholar 

  • Gultepe, I., & Starr, D. O. C. (1995). Dynamical structure and turbulence in cirrus clouds: Aircraft observations during FIRE. Journal of Atmospheric Science, 52, 4659–4682.

    Google Scholar 

  • Gultepe, I., Starr, D. O. C., Heymsfield, A. J., Uttal, T., Ackerman, T. P., & Westphal, D. L. (1995). Dynamical characteristics of cirrus clouds from aircraft and radar observations in micro and meso-gamma scales. Journal of Atmospheric Science, 52, 4060–4078.

    Google Scholar 

  • Gultepe, I., Zhou, B., Milbrandt, J., Bott, A., Li, Y., Heymsfield, A. J., et al. (2015). A review on ice fog measurements and modeling. Atmospheric Research, 151, 2–19.

    Google Scholar 

  • Guttman, N. B., & Jeck, R. K. (1987). Aircraft icing environment in low ceiling conditions near Washington, D.C. Weather Forecasting, 2, 114–126.

    Google Scholar 

  • Hadley, D., Hufford, G. L., & Simpson, J. J. (2004). Resuspension of relic volcanic ash and dust from katmai: Still an aviation hazard. Weather Forecasting, 19, 829–840.

    Google Scholar 

  • Haggerty, J., Defer, E., De Laat, A., Bedka, K., Moisselin, J., Potts, R., et al. (2019). Detecting Clouds Associated with Jet Engine Ice Crystal Icing. Bulletin of the American Meteorological Society, 100, 31–40. https://doi.org/10.1175/BAMS-D-17-0252.1.

    Google Scholar 

  • Haiden, T., Kann, A., & Pistotnik, G. (2014). Nowcasting with INCA during SNOW-V10. Pure and Applied Geophysics, 171–1, 171–172. https://doi.org/10.1007/s00024-012-0547-8.

    Google Scholar 

  • Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., & Gruber, C. (2011). The integrated nowcasting through comprehensive analysis (INCA) system and its validation over the Eastern Alpine region. Weather Forecasting, 26, 166–183.

    Google Scholar 

  • Hamazu, K., Hashiguchi, H., Wakayama, T., Matsuda, T., Doviak, R. J., & Fukao, S. (2003). A 35-GHz scanning doppler radar for fog observations. Journal of Atmosphere Oceanic Technology, 20, 972–986.

    Google Scholar 

  • Han, Y., Snider, J. B., Westwater, E. R., Melfi, S. H., & Ferrare, R. A. (1994). Observations of water vapor by ground-based microwave radiometers and Raman lidar. Journal of Geophysics Research, 99(D9), 18695–18702.

    Google Scholar 

  • Hansen, B. (2007). A fuzzy logic-based analog forecasting system for ceiling and visibility. Weather Forecasting, 22, 1319–1330.

    Google Scholar 

  • Hansen, B., Gultepe, I., & Ling, A. (2009). Update on WIND-3: An analog forecasting system for ceiling and visibility. In Joint session of the sixth conference on artificial intelligence applications to environmental science and the 13th conference on aviation, range and aerospace meteorology; 88th annual meeting of the american meteorological society, New Orleans, LA, 20–24 January 2008. Oral presentation.

  • Harrington, J. Y., Sulia, K., & Morrison, H. (2013a). A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. Journal of Atmospheric Science, 70, 349–364.

    Google Scholar 

  • Harrington, J. Y., Sulia, K., & Morrison, H. (2013b). A method for adaptive habit prediction in bulk microphysical models. Part II: Parcel model corroboration. Journal of Atmospheric Science, 70, 365–376. https://doi.org/10.1175/jas-d-12-0152.1.

    Google Scholar 

  • Hart, K. A., Steenburgh, W. J., Onton, D. J., & Siffert, A. J. (2004). An evaluation of mesoscale-model-based model output statistics (MOS) during the 2002 olympic and paralympic winter games. Weather Forecasting, 19, 200–218.

    Google Scholar 

  • Haupt, S. E., & Delle Monache, L. (2014). Understanding ensemble prediction: How probabilistic wind power prediction can help in optimizing operations. WindTech International. http://www.windtech-international.com/editorial-features/understanding-ensemble-prediction.

  • Heidinger, A. K. (2010). ABI cloud mask algorithm theoretical basis document. NOAA/NESDIS Center for Satellite Applications and Research, p. 67.

  • Herman, L. (1993). High frequency satellite cloud motion at high latitudes. In Preprints, eighth symp. on meteorological observations and instrumentation, Anaheim, CA, Amer. Meteor. Soc., pp. 465–468.

  • Herzegh, P., Wiener, G., Bateman, R., Cowie, J., & Black, J. (2015). Data fusion enables better recognition of ceiling and visibility hazards in aviation. Bulletin American Meteorology Society, 96, 526–532.

    Google Scholar 

  • Herzegh, P. H., Williams, E. R., Lindholm, T. A., Mosher, F. R., Kessinger, C., Sharman, R., Hawkins, J. D., & Johnson, D. B. (2002). Development of automated aviation weather products for oceanic/remote regions: Scientific and practical challenges, research strategies and first steps. In Preprints, 10th aviation, range and aerospace meteorology conference, AMS, Portland, OR, 13–16 May 2002.

  • Heymsfield, A., Baumgardner, D., DeMott, P., Forster, P., Gierens, K., & Kärcher, B. (2010). Contrail microphysics. Bulletin American Meteorology Society, 91, 465–472.

    Google Scholar 

  • Heymsfield, A. J., & Sabin, R. M. (1989). Cirrus crystal nucleation by homogeneous freezing of solution drops. Journal of Atmospheric Science, 46, 2252–2264.

    Google Scholar 

  • Heymsfield, A. J., & Sabin, R. M. (1993). Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds. Journal of Atmospheric Science, 50, 2335–2353.

    Google Scholar 

  • Heymsfield, A. J., Schmitt, C., Bansemer, A., Twohy, C., Poellot, M., Fridland, A., et al. (2005). Homogeneous ice nucleation in subtropical and tropical convection and its influence on cirrus anvil microphysics. Journal of Atmospheric Science, 62, 41–64.

    Google Scholar 

  • Heymsfield, A. J., Thompson, G., Morrison, H., Bansemer, A., Rasmussen, R. M., Minnis, P., et al. (2011). Formation and spread of aircraft-induced holes in clouds. Science, AAAS, 333, 77–81.

    Google Scholar 

  • Hill, M., Calhoun, R., Fernando, H., Wieser, A., Dörnbrack, A., Weissmann, M., et al. (2010). Coplanar Doppler lidar retrieval of rotors from T-REX. Journal of Atmospheric Science, 67(3), 713–729.

    Google Scholar 

  • Hocking, A., & Hocking, W. K. (2018). Tornado identification and forewarning with very high frequency windprofiler radars. Atmosphere Science Letters, 19, e795. https://doi.org/10.1002/asl.795.

    Google Scholar 

  • Hodges, D., & Pu, Z. (2016). The climatology, frequency, and distribution of cold season fog events in northern Utah. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-015-1187-6.

    Google Scholar 

  • Hodges, D., & Pu, Z. (2018). Characteristics and variations of low level jets in the contrastingprecipitation extremes of 2006 and 2007 over the Southern Great Plains. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-2492-7.

    Google Scholar 

  • Hubbert, J. C. (2017). Differential reflectivity calibration and antenna temperature. Journal of Atmosphere Oceanic Technology, 34, 1885–1906.

    Google Scholar 

  • Hubbert, J., Bringi, V. N., Carey, L. D., & Bolen, S. (1998). CSU-CHILL Polarimetric Radar Measurementsfrom a Severe Hail Storm in Eastern Colorado. Journal of Applied Meteorology, 37, 749–775. https://doi.org/10.1175/1520-0450(1998)037<0749:CCPRMF>2.0.CO;2.

    Google Scholar 

  • Hubbert, J. C., Wilson, J. W., Weckwerth, T. M., Ellis, S. M., Dixon, M., & Loew, E. (2018). S-Pol’s polarimetric data reveal detailed storm features (and insect behavior). Bulletin American Meteorology Society, 99, 2045–2060.

    Google Scholar 

  • Hubert, L. F., & Whitney, L. F. (1971). Wind estimation from wind estimation from geostationary –satellite pictures. Monthly Weather Review, 99, 665–672.

    Google Scholar 

  • Hufford, G. L., Salinas, L. S., Simpson, J. J., Barske, E. G., & Pieri, D. (2000). Operational implications of airborne volcanic ash. Bulletin American Meteorology Society, 81, 745–755.

    Google Scholar 

  • Hutchison, K. D., Iisager, B. D., Kopp, T. J., & Jackson, J. M. (2008). Distinguishing aerosols from clouds in global, multispectral satellite data with automated cloud classification algorithms. Journal of Atmosphere Oceanic Technology, 25, 501–518.

    Google Scholar 

  • ICAO. (2005). Manual On Low-Level Wind Shear And Turbulence First Edition—2005. Doc 9817, AN/449. Publisher: International Civil Aviation Organization (ICAO). DOC-09817-001-01-E-P, p. 213.

  • Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., et al. (2015). The EarthCARE Satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bulletin American Meteorology Society, 96, 1311–1332.

    Google Scholar 

  • Irvine, E. A., Shine, Keith P., & Stringer, Marc A. (2016). What are the implications of climate change for trans-Atlantic aircraft routing and flight time? Transportation Research Part D, 47, 44–53.

    Google Scholar 

  • Isaac, G.A., Ayers, J. K., Bailey, M., Bissonnette, L., Bernstein, B. C., Cober, S. G., & Driedger, N., et al. (2005). 43rd AIAA aerospace sciences meeting and exhibit 1013 January 2005, Reno, Nevada, AIAA 2005-252, p. 18.

  • Isaac, G. A., Bailey, M., Boudala, F., Burrows, W., Cober, S. G., Crawford, R. T., et al. (2014). The Canadian airport nowcasting system (CAN-Now). QJRM Meterological Applications, 21, 30–49.

    Google Scholar 

  • Isaac, G. A., & Schemenauer, R. S. (1979). Large particles in supercooled regions of northern Canadian cumulus clouds. Journal of Applied Meteorology, 18, 1056–1065.

    Google Scholar 

  • Ismail, S., & Browell, E. V. (1994). Recent Lidar technology developments and their influence on measurements of tropospheric water vapor. Journal of Atmosphere Oceanic Technology, 11, 76–84.

    Google Scholar 

  • Jacobs, A. J., & Maat, N. (2005). Numerical guidance methods for decision support in aviation meteorological forecasting. Weather Forecasting, 20, 82–100.

    Google Scholar 

  • Jewell, R., & Brimelow, J. (2009). Evaluation of Alberta Hail growth model using severe hail proximity soundings from the United States. Weather Forecasting, 24, 1592–1609. https://doi.org/10.1175/2009WAF2222230.1.

    Google Scholar 

  • Jonassen, M. O., Ólafsson, H., Ágústsson, H., Rögnvaldsson, Ó., & Reuder, J. (2012). Improving high-resolution numerical weather simulations by assimilating data from an unmanned aerial system. Monthly Weather Review, 140, 3734–3756.

    Google Scholar 

  • Jones, R. H. (1965). Optimal estimation of initial conditions for numerical prediction. Journal of Atmospheric Science, 22, 658–663.

    Google Scholar 

  • Jones, T. A., Knopfmeier, K., Wheatley, D., Creager, G., Minnis, P., & Palikonda, R. (2016). Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on Forecast. Part 2: Combined radar and satellite data experiments. Weather Forecasting, 31, 297–327. https://doi.org/10.1175/waf-d-15-0107.1.

    Google Scholar 

  • Kain, J. S., et al. (2010). Assessing advances in the assimilation of radar data within a collaborative forecasting-research environment. Weather Forecasting, 25, 1510–1521.

    Google Scholar 

  • Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability (p. 341). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kalnay, E., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471.

    Google Scholar 

  • Kann, A., Schellander-Gorgas, T., & Wittmann, C. (2015). Enhanced short-range forecasting of sub-inversion cloudiness in complex terrain. Atmospheric Science Letters, 16, 1–9.

    Google Scholar 

  • Kaplan, M. L., Huffman, A. W., Lux, K. M., Cetola, J. D., Charney, J. J., Riordan, A. J., et al. (2005a). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteorology and Atmospheric Physics, 88, 129–152.

    Google Scholar 

  • Kaplan, M. L., Huffman, A. W., Lux, K. M., Cetola, J. D., Charney, J. J., Riordan, A. J., et al. (2005b). Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 2: Hydrostatic mesoscale numerical simulations of super gradient wind flow and streamwise ageostrophic frontogenesis. Meteorology and Atmospheric Physics, 88, 153–173.

    Google Scholar 

  • Kara, A. B., Wallcraft, A. J., Barron, C. N., Hurlburt, H. E., & Bourassa, M. A. (2008). Accuracy of 10 m winds from satellites and NWP products near land-sea boundaries. Journal of Geophysics Research, 113, C10020. https://doi.org/10.1029/2007jc004516.

    Google Scholar 

  • Kara, A. B., Wallcraft, A. J., & Hurlburt, H. E. (2007). A correction for land contamination of atmospheric variables near land-sea boundaries. Journal of Physical Oceanography, 37, 803–818.

    Google Scholar 

  • Karstens, C. D., Correia, J., Jr., LaDue, D. S., Wolfe, J., Meyer, T. C., Harrison, D. R., et al. (2018). Development of a human-machine mix for forecasting severe convective events. Weather and Forecasting, 33, 715–737.

    Google Scholar 

  • Karstens, C. D., et al. (2015). Evaluation of a probabilistic forecasting methodology for severe convective weather in the 2014 hazardous weather testbed. Weather Forecasting, 30, 1551–1570.

    Google Scholar 

  • Kelly, D. S., & Ghirardelli, J. E. (1998). A general overview of methodology and applications of the Local AWIPS MOS Program (LAMP), a short-range forecast guidance product. In Preprints, 16th conf. on weather analysis and forecasting, Phoenix, AZ, Amer. Meteor. Soc., pp. 437–439.

  • Kelsch, M., & Wharton, L. (1996). Comparing PIREPs with NAWAU turbulence and icing forecasts: issues and results. Weather Forecasting, 11, 385–390.

    Google Scholar 

  • Kessinger, C., et al. (2006a). The FAA AWRP Oceanic weather program development team. In Preprints-CD, 12th aviation, range and aerospace meteorology conference, AMS, Atlanta, GA, 30 Jan–2 Feb 2006.

  • Kessinger, C., Herzegh, P., Blackburn, G., Sharman, R., Wiener, G., Hendrickson, B., & Levesque, K., et al. (2006b). The FAA AWRP oceanic weather program development team. In Preprints, AMS 12th conf. on aviation range and aerospace. Poster 3.9/P1.19.

  • Key, J. R., Santek, D., Velden, C. S., Bormann, N., Riishojgaard, J.-N. L. P., Zhu, Y., et al. (2003). Cloud drift and water vapor winds in the polar regions from MODIS. IEEE Transactions on Geoscience and Remote Sensing, 41, 482–492.

    Google Scholar 

  • Khairoutdinov, M., & Kogan, Y. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Monthly Weather Review, 128, 229–243.

    Google Scholar 

  • Khairoutdinov, M., & Randall, D. (2006). High-resolution simulation of shallow-to-deep convection transition over land. Journal of Atmospheric Science, 63, 3421–3436.

    Google Scholar 

  • Kilpinen, J. (1994). Computer-aided weather forecasting system set to enter operation in Scandinavia. ICAO Journal, 49(8), 17–18.

    Google Scholar 

  • Kim, J. H., Chan, W. N., Banavar, S., & Sharman, R. D. (2015). Combined winds and turbulence prediction system for automated air-traffic management applications. Journal of Applied Meteorology Climatology, 54, 766–784. https://doi.org/10.1175/jamc-d-14-0216.1.

    Google Scholar 

  • Kim, J. H., Chan, W. N., Sridhar, B., Sharman, R. D., Williams, P. D., & Strahan, M. (2016). Impact of the North Atlantic Oscillation on transatlantic flight routes and clear-air turbulence. Journal of Applied Meteorology Climatology, 55, 763–771. https://doi.org/10.1175/jamc-d-15-0261.1.

    Google Scholar 

  • Kim, S.-H., Chun, H.-Y., & Chan, P. W. (2017). Comparison of turbulence indicators obtained from in situ flight data. Journal of Applied Meteorology Climatology, 56, 1609–1623. https://doi.org/10.1175/jamc-d-16-0291.1.

    Google Scholar 

  • Kim, J.-H., Chun, H.-Y., Sharman, R. D., & Keller, T. L. (2011). Evaluations of upper-level turbulence diagnostics performance using the Graphical Turbulence Guidance (GTG) system and pilot reports (PIREPs) over East Asia. Journal of Applied Meteorology Climatology, 50, 1936–1951. (Corrigendum, 50, 2193).

    Google Scholar 

  • Knox, J. A. (1997). Possible mechanisms of clear-air turbulence in strongly anticyclonic flow. Monthly Weather Review, 125, 1251–1259.

    Google Scholar 

  • Knox, J. A., McCann, D. W., & Williams, P. D. (2008). Application of the lighthill-ford theory of spontaneous imbalance to clear-air turbulence forecasting. Journal of Atmospheric Science, 65, 3292–3304. https://doi.org/10.1175/2008JAS2477.1.

    Google Scholar 

  • Knox, J. A., et al. (2016). Automated turbulence forecasting strategies. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 243–260). Berlin: Springer.

    Google Scholar 

  • Knüppfer, K. (1997). Automation of aviation forecasts. The projects AUTOTAF and AUTOGAFOR. In Preprints, seventh conf. on aviation, range, and aerospace meteorology, Long Beach, CA, Amer. Meteor. Soc., pp. 444–449.

  • Kober, K., Craig, G. C., Keil, C., & Dörnbrack, A. (2012). Blending a probabilistic nowcasting method with a high-resolution numerical weather prediction ensemble for convective precipitation forecasts. Quarterly Journal Royal Meteorological Society, 138, 755–768.

    Google Scholar 

  • Koch, S. E., & Caracena, F. (2002) Predicting clear-air turbulence from diagnosis of unbalanced flow. In Preprints, 10th conf. on aviation, range, and aerospace meteorology, Portland, OR, Amer. Meteor. Soc., 10.4. http://ams.confex.com/ams/pdfpapers/39012.pdf.

  • Kopeć, J. M., Kwiatkowski, K., de Haan, S., & Malinowski, S. P. (2016). Retrieving atmospheric turbulence information from regular commercial aircraft using Mode-S and ADS-B. Atmosphere Measure Technology, 9, 2253–2265. https://doi.org/10.5194/amt-9-2253-2016.

    Google Scholar 

  • Kücken, M., Hauffe, D., & Österle, H. (2012). A high-resolution simulation of the year 2003 for Germany using the regional model COSMO. Journal of Applied Meteorology Climatology, 51, 1889–1903.

    Google Scholar 

  • Kumjian, M. R. (2012). Freezing of raindrops in deep convective updrafts: A microphysical and polari-metric model. Journal of Atmospheric Science, 69, 3471–3490.

    Google Scholar 

  • Kumjian, M. R. (2013a). Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. Journal of Operational Meteorology, 1, 226–242.

    Google Scholar 

  • Kumjian, M. R. (2013b). Principles and applications of dual-polarization weather radar. Part II: Warm- and cold-season applications. Journal of Operational Meteorology, 1, 243–264.

    Google Scholar 

  • Lakshmanan, V., & Smith, T. (2009). Data mining storm attributes from spatial grids. Journal of Atmosphere Oceanic Technology, 26, 2353–2365.

    Google Scholar 

  • Landolt, S., Politovich, M., Rasmussen, R., & Gaydos, A. (2010). A comparison of an automated freezing drizzle algorithm to human observations. AMS annual meeting, Atlanta, Georgia, on 16–21 Jan 2010. In 14th conference on aviation, range, and aerospace meteorology, p. 4.

  • Langland, R. H., et al. (1999). The North Pacific Experiment (NORPEX-98): Targeted observations for improved North American weather forecasts. Bulletin American Meteorology Society, 80, 1363–1384.

    Google Scholar 

  • Langmuir, I., Schaefer, V.J., Vonnegut, B., Maynard, K., Smith-Johannsen, R., Blanchard, D., & Falconer, R. E. (1948). Final reports, project cirrus, RL140. General Electric Res. Lab. Req 21190 with the Depart. Of the Army Project: 3-99-07-022, p. 119.

  • Lawrence, D. A., & Balsley, B. B. (2013). High-resolution atmospheric sensing of multiple atmospheric variables using the DataHawk small airborne measurement system. Journal of Atmosphere Oceanic Technology, 30, 2352–2366. https://doi.org/10.1175/jtech-d-12-00089.1.

    Google Scholar 

  • Lawson, R. P., Angus, L. J., & Heymsfield, A. J. (1998). Cloud 5 particle measurements in thunderstorm anvils and possible weather threat to aviation. Journal of Aircraft, 35, 113–121.

    Google Scholar 

  • Lee, D. R., Stull, R. S., & Irvine, W. S. (1984). Clear air turbulence forecasting techniques. Air Weather Service Tech. Note AFGWC/TN-79/001 (REV), Air Force Global Weather Central, Offutt AFB, NE, p. 16.

  • Leroy, D., Fontaine, E., Schwarzenboeck, A., & Strapp, J. W. (2016). Ice crystal sizes in high ice water content clouds. Part I: On the computation of median mass diameter from in situ measurements. Journal of Atmosphere Oceanic Technology, 33, 2461–2476.

    Google Scholar 

  • Leroy, D., Fontaine, E., Schwarzenboeck, A., Strapp, J. W., Korolev, A., McFarquhar, G., et al. (2017). Ice crystal sizes in high ice water content clouds. Part II: statistics of mass diameter percentiles in tropical convection observed during the HAIC/HIWC project. Journal of Atmosphere Oceanic Technology, 34, 117–136.

    Google Scholar 

  • Lewis, W. (1947). A flight investigation of the meteorological conditions conducive to the formation of ice on airplanes. NACA TN 1393.

  • Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climatology Applied Meteorology, 22, 1065–1092.

    Google Scholar 

  • Lin, C.-Y., Zhang, Z., Pu, Z., & Wang, F. (2017). Numerical simulations of an advection fog event over the Shanghai Pudong Airport with the WRF model. Journal of Meteorological Research, 31, 874–889.

    Google Scholar 

  • Linden, P. F., & Simpson, J. E. (1985). Microbursts: A hazard to aviation. Nature, 317(17), 601–602.

    Google Scholar 

  • Liu, Y., Xia, J., Shi, C. X., & Hong, Y. (2009). An improved cloud classification algorithm for China’s FY-2C multi-channel images using artificial neural network. Sensor, 9, 5558–5579.

    Google Scholar 

  • Löffler-Mang, M., Kunz, M., & Schmid, W. (1999). On the performance of a low-cost K-band doppler radar for quantitative rain measurements. Journal of Atmosphere Oceanic Technology, 16, 379–387.

    Google Scholar 

  • Luce, H., Nakamura, T., Yamamoto, M. K., Yamamoto, M., & Fukao, S. (2010). MU Radar and Lidar Observations of Clear-Air Turbulence underneath Cirrus. Monthly Weather Review, 138, 438–452.

    Google Scholar 

  • Ludlam, F. H. (1956). Fall-streak holes. Weather, 11, 89–90.

    Google Scholar 

  • Lynn, K. J. (1997) International survey of TAF automation systems. Forecasting systems, Met Office Internal Rep., p. 20.

  • Mancuso, R. L., & Endlich, R. M. (1966). Clear air turbulence frequency as a function of wind shear and deformation. Monthly Weather Review, 94, 581–585.

    Google Scholar 

  • Mandel, E. (1975). An early look at the development of an unmanned automated surface aviation weather observation system. Bulletin American Meteorology Society, 56, 979–982.

    Google Scholar 

  • Markowicz, K. M., & Witek, M. L. (2011). Simulations of contrail optical properties and radiative forcing for various crystal shapes. Journal of Applied Meteorology Climatology, 50, 1740–1755.

    Google Scholar 

  • Mason, J. G., Strapp, J. W., & Chow, P. (2006). The ice particle threat to engines in flight. In: 44th AIAA aerospace sciences meeting, Reno, Nevada, abstract number AIAA 2006-206, 9–12 January.

  • Matrosov, S. Y. (2005). Attenuation-based estimates of rainfall rates aloft with vertically pointing Ka-band radars. Journal of Atmosphere Oceanic Technology, 22, 43–54.

    Google Scholar 

  • Matthes, S., Schumann, U., Grewe, V., Frömming, C., Dahlmann, K., Koch, A., et al. (2012). Climate optimized air transport. In U. Schumann (Ed.), Atmospheric physics—Background, methods, trends, prediction (pp. 727–746). Berlin: Springer.

    Google Scholar 

  • McCann, D. W. (2001). Gravity waves, unbalanced flow, and clear air turbulence. National Weather Digest, 25, 3–14.

    Google Scholar 

  • McCann, D. W., Know, J. A., & Williams, P. D. (2012). An improvement in clear-air turbulence forecasting based on spontaneous imbalance theory: the ULTURB algorithm. Meteorological Applications, 19, 71–78.

    Google Scholar 

  • McCarthy, J., & Serafin, R. J. (1984). The microburst hazard to aircraft. Weatherwise, 37, 120–127.

    Google Scholar 

  • McCarthy, J., Wilson, J. W., & Fujita, T. T. (1982). The joint airport weather studies (JAWS) project. Bulletin American Meteorology Society, 63, 15–22.

    Google Scholar 

  • McCarty, J., Banta, R. M., Olson, J. B., Carley, J. R., Marquis, M. C., Brewer, W. A., et al. (2017). Assessment of NWP forecast models in simulating offshore winds through the lower boundary layer by measurements from a ship-based scanning Doppler lidar. Monthly Weather Review, 22, 22. https://doi.org/10.1175/mwr-d-16-0442.1.

    Google Scholar 

  • McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D., Lagerquist, R., et al. (2017). Using artificial intelligence to improve real-time decision-making for high-impact weather. Bulletin American Meteorology Society, 98, 2073–2090.

    Google Scholar 

  • Mead, J. B., Mcintosh, R. E., Vandemark, D., & Swift, C. T. (1989). Remote sensing of clouds and fog with a 1.4-mm radar. Journal of Atmosphere Oceanic Technology, 6, 1090–1097.

    Google Scholar 

  • Meckalski, J. R., et al. (2002). NASA advanced satellite aviation-weather products (ASAP) study report. NASA Tech. Rep., p. 65.

  • Meckalski, J. R., Feltz, W. F., Murray, J. J., Johnson, D. B., Bedka, K. M., Bedka, S. T., et al. (2007). Aviation applications for satellite-based observations of cloud properties, convection initiation, in-flight icing, turbulence, and volcanic ash. Bulletin American Meteorology Society, 88, 1589–1607.

    Google Scholar 

  • Megenhardt, D., Mueller, C. K., Rehak, N., & Cunning, G. (2000). Evaluation of the national convective weather forecast product. In Preprints. 9th conf on aviation, range, and aerospace meteorology, AMS, Orlando, FL, pp. 171–176.

  • Meischner, P., Baumann, R., Höller, H., & Jank, T. (2001). Eddy dissipation rates in thunderstorms estimated by Doppler Radar in relation to aircraft in situ measurements. Journal of Atmosphere Oceanic Technology, 18, 1609–1627.

    Google Scholar 

  • Menzel, W. P., Schmit, T. J., Zhang, P., & Li, J. (2018). Satellite-based atmospheric infrared sounder development and applications. Bulletin American Meteorology Society, 99, 583–603. https://doi.org/10.1175/BAMS-D-16-0293.1.

    Google Scholar 

  • Merritt, L. P. (1969). Comparison of airborne and ground based weather radars. Journal of Applied Meteorology, 8, 963–974.

    Google Scholar 

  • Michelson, M., Shrader, W. W., & Wieler, J. G. (1990). Terminal doppler weather radar. Microwave Journal, 33, 139–148.

    Google Scholar 

  • Miller, T. P., & Casadevall, T. J. (1999). Volcanic ash hazards to aviation. In H. Sigurdsson, et al. (Eds.), Encyclopedia of volcanoes (pp. 925–930). Oxford: Academic.

    Google Scholar 

  • Miller, Steven D., et al. (2014). Estimating three-dimensional cloud structure via statistically blended satellite observations. Journal of Applied Meteorology Climatology, 53, 437–455.

    Google Scholar 

  • Minnis, P., Bedka, S. T., Duda, D. P., Bedka, K. M., Chee, T. L., Ayers, J. K., et al. (2013). Linear contrails and contrail cirrus properties determined from satellite data. Geophysical Research Letters, 40, 3220–3226. https://doi.org/10.1002/grl.50569.

    Google Scholar 

  • Minnis, P., Bedka, K., Trepte, Q., Yost, C. R., Bedka, S. T., Scarino, B., & Khlopenkov, K., et al. (2016). A consistent long-term cloud and clear-sky radiation property dataset from the Advanced Very High Resolution Radiometer (AVHRR). Climate Algorithm Theoretical Basis Document (C-ATBD), CDRP-ATBD-0826 Rev 1 AVHRR Cloud Properties—NASA, NOAA CDR Program, 19 September, p. 159.

  • Minnis, P., Nguyen, L., Palikonda, R., Heck, P. W., Spangenberg, D. A., Doelling, D. R., & Ayers, J. K., et al. (2008) Near-real time cloud retrievals from operational and research meteorological satellites. In Proc. SPIE 7108, Remote Sens. Clouds Atmos. XIII, Cardiff, Wales, UK, 15–18 September, p. 8. https://doi.org/10.1117/12.800344

  • Minnis, P., Schumann, U., Doelling, D. R., Gierens, K. M., & Fahey, D. W. (1999). Global distribution of contrail radiative forcing. Geophysical Research Letters, 26, 1853–1856.

    Google Scholar 

  • Minnis, P., Sun-Mack, S., Young, D. F., Heck, P. W., Garber, D. P., Chen, Y., et al. (2011). CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4374–4400. https://doi.org/10.1109/tgrs.2011.2144601.

    Google Scholar 

  • Minnis, P., Young, D. F., Nguyen, L., Garber, D. P., Smith, W. L., Jr., & Palikonda, R. (1998). Transformation of contrails into cirrus during SUCCESS. Geophysical Research Letters, 25, 1157–1160.

    Google Scholar 

  • Mittaz, J., & Harris, A. (2011). A Physical method for the calibration of the AVHRR/3 thermal IR channels. Part II: An in-orbit comparison of the AVHRR longwave thermal IR channels on board MetOp-A with IASI. Journal of Atmosphere Oceanic Technology, 28, 1072–1087. https://doi.org/10.1175/2011JTECHA1517.1.

    Google Scholar 

  • Moninger, W. R., Benjamin, S. G., Jamison, B. D., Schlatter, T. W., Smith, T. L., & Szoke, E. J. (2010). Evaluation of regional aircraft observations using TAMDAR. Weather Forecasting, 25, 627–645.

    Google Scholar 

  • Moninger, W. R., Mamrosh, R. D., & Pauley, P. M. (2003). Automated meteorological reports from commercial aircraft. Bulletin American Meteorology Society, 84, 203–216.

    Google Scholar 

  • Moosakhanian, A., Schmidt, S., Dash, E. R., Daniels, T.vS., & Stough, P. (2006). FAA–NASA collaboration on automated aircraft weather observations—culminating in TAMDAR. In 12th conference on aviation range and aerospace meteorology, Atlanta, GA, Amer. Meteor. Soc. Annual Meeting. https://ams.confex.com/ams/pdfpapers/104168.pdf.

  • Morrison, H., & Milbrandt, J. (2015). Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Journal of Atmospheric Science, 72, 287–311.

    Google Scholar 

  • Motta, M., Barthelmie, R. J., & Vølund, P. (2005). The influence of non-logarithmic wind speed profiles on potential power output at danish offshore sites. Wind Energy, 8, 219–236. https://doi.org/10.1002/(issn)1099-1824.

    Google Scholar 

  • Mueller, C., Saxen, T., Roberts, R., Wilson, J., Betancourt, T., Dettling, S., et al. (2003). NCAR auto-nowcast system. Weather Forecasting, 18, 545–561.

    Google Scholar 

  • Mueller, C. K., Wilson, J. W., & Crook, N. A. (1993). The utility of sounding and mesonet data to nowcast thunderstorm initiation. Weather Forecasting, 8, 132–146.

    Google Scholar 

  • Myhre, G., & Stordal, F. (2001). Global sensitivity experiments of the radiative forcing due to mineral aerosols. Journal of Geophysics Research, 106, 18193–18204.

    Google Scholar 

  • Nair, U. S., Weger, R. C., Kuo, K. S., & Welch, R. M. (1998). Clustering, randomness, and regularity in-cloud fields. The nature of regular cumulus cloud fields. Journal of Geophysics Research, 103, 11363–11380.

    Google Scholar 

  • Nance, L. B., & Durran, D. R. (1997). A modeling study of nonstationary trapped mountain lee waves. Part I: Mean-flow variability. Journal of Atmospheric Science, 54, 2275–2291.

    Google Scholar 

  • Neely, R. R., & Thayer, J. P. (2011). Raman lidar profiling of tropospheric water vapor over Kangerlussuaq, Greenland. Journal of Atmosphere Oceanic Technology, 28, 1141–1148.

    Google Scholar 

  • Newton, D. W. (1978). An integrated approach to the problem of aircraft icing. Journal of Aircraft, 15, 374–381.

    Google Scholar 

  • Nicholls, M., Pielke, R., & Meroney, R. (1993). Large eddy simulation of microburst winds flowing around a building. Journal of Wind Engineering and Industrial Aerodynamics, 46–47, 229–237.

    Google Scholar 

  • NOAA, 2012: NWSChat Live User Manual, p. 12.

  • NOAA NWS. (2016). Terminal aerodrome forecasts. Instruction 10-813. http://www.nws.noaa.gov/directives/.

  • Noh, Y., Seaman, C. J., Vonder Haar, T. H., & Liu, G. (2013). In situ aircraft measurements of the vertical distribution of liquid and ice water content in midlatitude mixed-phase clouds. Journal of Applied Meteorology Climatology, 52, 269–279.

    Google Scholar 

  • NTSB. (1996). Aircraft accident report. Vol. 1. National Transportation Safety Board NTSB/AAR–96/01–PB96–910401, 322 pp. [Available from NTSB, 490 L’Enfant Plaza, S.W., Washington, DC 20594.].

  • NTSB (2010). NASDAC Review of National Transportation Safety Board (NTSB) weather-related accidents (20032007). http://www.asias.faagov/.

  • NWPSD (2004). Operations and services, aviation weather services, NWSPD, 10-8, 2004, NWS Instruction 10-813,Terminal Aerodrome Forecasts, Feb. 1, 2004, p. 51.

  • Ødegaard, V. (1997). Ice phase parameterization in a numerical weather prediction model. Weather Forecasting, 12, 127–139.

    Google Scholar 

  • Orf, L. G., & Anderson, J. R. (1999). A numerical study of traveling microbursts. Monthly Weather Review, 127, 1244–1257.

    Google Scholar 

  • Orf, L. G., Anderson, J. R., & Straka, J. M. (1996). A three-dimensional numerical analysis of colliding microburst outflow dynamics. Journal of Atmospheric Science, 53, 2490–2511.

    Google Scholar 

  • Orville, R. E. (2008). Development of the national lightning detection network. Bulletin American Meteorology Society, 89, 180–190.

    Google Scholar 

  • Oude Nijhuis, A., Thobois, L., Barbaresco, F., De Haan, S., Dolfi-Bouteyre, A., Kovalev, D., et al. (2018). Wind hazard and turbulence monitoring at airports with lidar, radar and Mode-S downlinks: The UFO Project. Bulletin American Meteorology Society. https://doi.org/10.1175/BAMS-D-15-00295.1.

    Google Scholar 

  • Pasini, A., & Marzban, C. (2008). Artificial intelligence methods in the environmental sciences (p. 424). Berlin: Springer.

    Google Scholar 

  • Pavolonis, M. J. (2010a). Advances in extracting cloud composition information from space borne infrared radiances: A robust alternative to brightness temperatures. Part I: Theory. Journal of Applied Meteorology Climatology, 49, 1992–2012.

    Google Scholar 

  • Pavolonis, M. J. (2010b). ABI cloud type/phase algorithm theoretical basis document. NOAA/NESDIS/Center for Satellite Applications and Research (STAR), p. 60.

  • Pavolonis, M. J., Feltz, W. F., Heidinger, A. K., & Gallina, G. M. (2006). A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. Atmosphere Oceanic Technology, 23, 1422–1444.

    Google Scholar 

  • Pavolonis, M. J., & Heidinger, A. K. (2004). Daytime cloud overlap detection from AVHRR and VIIRS. Journal of Applied Meteorology, 43, 762–778.

    Google Scholar 

  • Pavolonis, M. J., Heidinger, A. K., & Uttal, T. (2005). Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. Journal of Atmosphere Oceanic Technology, 44, 804–826.

    Google Scholar 

  • Pavolonis, M. J., Sieglaff, J., & Cintineo, J. (2018). Automated detection of explosive volcanic eruptions using satellite-derived cloud vertical growth rates. Earth and Space Science, 5, 903–928. https://doi.org/10.1029/2018EA000410.

    Google Scholar 

  • Pearson, J. M., & Sharman, R. D. (2017). Prediction of energy dissipation rates for aviation turbulence. Part II: Nowcasting convective and nonconvective turbulence. Journal of Applied Meteorology Climatology, 56, 339–351. https://doi.org/10.1175/JAMC-D-16-0312.1.

    Google Scholar 

  • Perrie, W., Zhang, W., Bourassa, M., Shen, H., & Vachon, P. W. (2008). Impact of satellite winds on marine wind simulations. Weather Forecasting, 23, 290–303.

    Google Scholar 

  • Peters, G. (1990). Temperature and wind profiles from radar wind profilers equipped with acoustic sources. Meteorological Rundsch, 42, 152–154.

    Google Scholar 

  • Peters, G., Hasselmann, D., & Pang, S. (1988). Radio acoustic sounding using an FM CW radar. Radio Science, 23, 640–646.

    Google Scholar 

  • Pinto, J. O., Grim, J. A., & Steiner, M. (2015). Assessment of the high-resolution rapid refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Weather Forecasting, 30, 892–913.

    Google Scholar 

  • Pithani, P., Ghude, S., Naidu, C. V., Kulkarni, R. G., Steeneveld, G., Sharma, A., et al. (2018). WRF model Prediction of a dense fog event occurred during WInter Fog EXperiment (WIFEX). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2053-0.

    Google Scholar 

  • Pleim, J. E., & Xiu, A. (1995). Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. Journal of Applied Meteorology, 34, 16–31.

    Google Scholar 

  • Politovich, M. K. (1989). Aircraft icing caused by large supercooled droplets. Journal of Applied Meteorology, 28, 856–868.

    Google Scholar 

  • Politovich, M. K. (1996). Response of a research aircraft to icing and evaluation of severity indices. Journal of Aircraft, 33, 291–297.

    Google Scholar 

  • Prata, A. J. (1989). Observations of volcanic ash clouds in the 10-12 micrometer window using AVHRR/2 data. International Journal of Remote Sensing, 10, 751–761.

    Google Scholar 

  • Proctor, F. H. (1988). Numerical simulations of an isolated microburst. Part I: Dynamics and structure. Journal of Atmospheric Science, 45, 3137–3160.

    Google Scholar 

  • Proctor, F. H. (1989). Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. Journal of Atmospheric Science, 46, 2143–2165.

    Google Scholar 

  • Protat, A., Rauniyar, S., Kumar, V. V., & Strapp, J. W. (2014). Optimizing the probability of flying in high ice water content conditions in the tropics using a regional-scale climatology of convective cell properties. Journal of Applied Meteorology Climatology, 53, 2438–2456.

    Google Scholar 

  • Pu, Z. (2017). Surface data assimilation and near-surface weather prediction over complex terrain. Book Chapter. In S. K. Park & L. Xu (Eds.), Data assimilation for atmospheric, oceanic and hydrologic applications (Vol. III, pp. 219–240). Berlin: Springer. https://doi.org/10.1007/978-3-319-43415-5_10

    Google Scholar 

  • Pu, Z., Chachere, C., Hoch, S., Pardyjak, E., & Gultepe, I. (2016). Numerical prediction of cold season fog events over complex terrain: The performance of the WRF model during MATERHORN-fog and early evaluation. Pure and Applied Geophysics, 22, 22. https://doi.org/10.1007/s00024-016-1375-z.

    Google Scholar 

  • Pu, Z., Lin, C., Dong, X., & Krueger, S. (2018). Sensitivity of numerical simulations of a mesoscale convective system to ice hydrometeors in bulk microphysical parameterization. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1787-z.

    Google Scholar 

  • Puempel, H., & Williams, P. D. (2016). The impacts of climate change on aviation: Scientific challenges and adaptation pathways. ICAO Environmental Report, pp. 205–207. https://www.icao.int/environmental-protection/Pages/env2016.aspx. Accessed 3 Jan 2019

  • Ralph, F. M., Intrieri, J., Andra, D., Atlas, R., Boukabara, S., Bright, D., et al. (2013). The emergence of weather-related test beds linking research and forecasting operations. Bulletin American Meteorology Society, 94, 1187–1211.

    Google Scholar 

  • Ramsay, A. C. (1999). A multi-sensor freezing drizzle algorithm for the automated surface observing system. In Preprints, 15th Int. conf. on interactive information and processing systems for meteorology, oceanography, and hydrology, Dallas, TX, Amer. Meteor. Soc., pp. 193–196.

  • Rasmussen, R., Baker, B., Kochendorfer, J., Meyers, T., Landolt, S., Fischer, A. P., et al. (2012). How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bulletin American Meteorology Society, 93, 811–829.

    Google Scholar 

  • Rasmussen, R., Dixon, M., Hage, F., Cole, J., Wade, C., Tuttle, J., et al. (2001). Weather support to deicing decision making (WSDDM): A winter weather nowcasting system. Bulletin American Meteorology Society, 82, 579–596.

    Google Scholar 

  • Rasmussen, R., Dixon, M., Vasiloff, S., Hage, F., Knight, S., Vivekanandan, J., et al. (2003). Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. Journal of Applied Meteorology, 42, 20–36. https://doi.org/10.1175/1520-0450(2003)042%3c0020:snuart%3e2.0.co;2.

    Google Scholar 

  • Rasmussen, R., Politovich, M., Marwitz, J., Sand, W., McGinley, J., Smart, J., et al. (1992). Winter icing and storms project (WISP). Bulletin American Meteorology Society, 73, 951–974.

    Google Scholar 

  • Raytheon. (2016). AWIPS CAVE-D2D user’s manual: AWIPS II operational build 13.4.1. Raytheon Doc. AWP.MAN.UM.A2-OB13.4.1, p. 609. www.unidata.ucar.edu/software/awips2/doc/CAVE_D2D_Manual.pdf.

  • Reehorst, A. L., Brinker, D. J., Ratvasky, T. P., Ryerson, C. C., & Koenig, G. G. (2005). The NASA icing remote sensing system. NASA/TM—2005-213591. Paper # 80776, p. 11.

  • Reineman, B. D., Lenain, L., & Melville, W. K. (2016). The use of ship-launched fixed-wing UAVs for measuring the marine atmospheric boundary layer and ocean surface processes. Journal of Atmosphere Oceanic Technology, 33, 2029–2052.

    Google Scholar 

  • Reineman, B. D., Lenain, L., Statom, N. M., & Melville, W. K. (2013). Development and testing of instrumentation for UAV-based flux measurements within terrestrial and marine atmospheric boundary layers. Journal of Atmosphere Oceanic Technology, 30, 1295–1319.

    Google Scholar 

  • Reitebuch, O. (2012). Wind lidar for atmospheric research. Atmospheric physics. In U. Schumann (Ed.), Background, methods, trends, prediction (pp. 487–507). Berlin: Springer.

    Google Scholar 

  • Roberts, R. D., & Rutledge, S. (2003). Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Weather Forecasting, 18, 562–584.

    Google Scholar 

  • Roberts, R. D., Saxen, T., Mueller, C., Wilson, J., Crook, A., Sun, J., & Henry, S. (1999). Operational application and use of NCAR’s thunderstorm nowcasting system. In Preprints, Int. conf. on interactive information and processing systems, Dallas, TX, Amer. Meteor. Soc., pp. 158–161.

  • Roquelaure, S., & Bergot, T. (2007). Seasonal sensitivity on COBEL-ISBA local forecast system for fog and low clouds. Pure and Applied Geophysics, 164, 1283–1301.

    Google Scholar 

  • Roquelaure, S., & Bergot, T. (2008). A local ensemble prediction system for fog and low clouds: Construction, bayesian model averaging calibration, and validation. Journal of Applied Meteorology Climatology, 47, 3072–3088.

    Google Scholar 

  • Roquelaure, S., & Bergot, T. (2009). Contributions from a local ensemble prediction system (LEPS) for improving fog and low cloud forecasts at airports. Weather Forecasting, 24, 39–52.

    Google Scholar 

  • Rose, S. F., Hobbs, P. V., Locatelli, J. D., & Stoelinga, M. T. (2004). A 10-yr climatology relating the locations of reported tornadoes to the quadrants of upper-level jet streaks. Weather Forecasting, 19, 301–309.

    Google Scholar 

  • Rudack, D. E., & Ghirardelli, J. E. (2010). A comparative verification of localized aviation model output statistics program (LAMP) and numerical weather prediction (NWP) model forecasts of ceiling height and visibility. Weather Forecasting, 25, 1161–1178.

    Google Scholar 

  • Rudra, R., Dickinson, W. T., Ahmed, S. I., Patel, P., Zhou, J., & Gharabaghi, B. (2015). Changes in rainfall extremes in Ontario. International Journal of Environment Research, 9(4), 1117–1372.

    Google Scholar 

  • Ryerson, W. R., & Hacker, J. P. (2014). The potential for mesoscale visibility predictions with a multimodel ensemble. Weather Forecasting, 29, 543–562.

    Google Scholar 

  • Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., & Zhang, P. (2013). Polarimetric radar characteristics of melting hail. Part II: Practical implications. Journal of Applied Meteorology Climatology, 52, 2871–2886.

    Google Scholar 

  • Ryzhkov, A. V., Zrnic, D. S., Hubbert, J. C., Bringi, V. N., Vivekanandan, J., & Brandes, E. A. (2002). Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. Journal of Atmosphere Oceanic Technology, 19, 340–354.

    Google Scholar 

  • Sand, W. R., Cooper, W. A., Politovich, M. K., & Veal, D. L. (1984). Icing Conditions Encountered by a Research Aircraft. Journal of Climate and Applied Meteorology., 23, 1427–1440. https://doi.org/10.1175/0733-3021-23.10.1427.

    Google Scholar 

  • Santel, D. (2010). The impact of satellite-derived polar winds on lower-latitude forecasts. Monthly Weather Review, 138, 123–139.

    Google Scholar 

  • Sathe, A., Mann, J., Gottschall, J., & Courtney, M. S. (2011). Can wind lidars measure turbulence? Journal of Atmosphere Oceanic Technology, 28, 853–868.

    Google Scholar 

  • Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J., & Lebair, W. J. (2017). A closer look at the ABI on the GOES-R series. Bulletin American Meteorology Society, 98, 681–698.

    Google Scholar 

  • Schmit, T. J., Gunshor, M. M., Menzel, W. P., Li, J., Bachmeier, S., & Gurka, J. J. (2005). Introducing the next-generation advanced baseline imager on GOES-R. Bulletin American Meteorology Society, 86, 1079–1096.

    Google Scholar 

  • Schreiner, A. J., Unger, D. A., Menzel, W. P., Ellrod, G. P., Strabala, K. I., & Pellett, J. L. (1993). A comparison of ground and satellite observations of cloud cover. Bulletin American Meteorology Society, 74, 1851–1861.

    Google Scholar 

  • Schultz, P., & Politovich, M. K. (1992). Toward the improvement of aircraft-icing forecasts for the continental United States. Weather Forecasting, 7, 491–500.

    Google Scholar 

  • Schumann, U., Graf, K., Mannstein, H., & Mayer, B. (2012a). Contrails: Visible aviation induced climate impact. In U. Schumann (Ed.), Atmospheric physics—Background, methods, trends, prediction (pp. 239–257). Berlin: Springer.

    Google Scholar 

  • Schumann, U., Mayer, B., Graf, K., & Mannstein, H. (2012b). A parametric radiative forcing model for contrail cirrus. Journal of Applied Meteorology Climatology, 51, 1391–1406.

    Google Scholar 

  • Schumann, U., & Heymsfield, A. J. (2017). On the life cycle of individual contrails and contrail cirrus. Meteorological Monographs, 58, 3.1–3.24.

    Google Scholar 

  • Schumann, U., & Mayer, B. (2017). Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model. Atmospheric Chemistry Physics, 17, 13833–13848.

    Google Scholar 

  • Schuur, T. J., Park, H., Ryzhkov, A. V., & Reeves, H. D. (2012). Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. Journal of Applied Meteorology Climatology, 51, 763–779.

    Google Scholar 

  • Schwartz, B. (1996). The quantitative use of PIREPs in developing aviation weather guidance products. Weather Forecasting, 11, 372–384. https://doi.org/10.1175/1520-434(1996)011,0372:tquopi.2.0.co;2.

    Google Scholar 

  • Schwartz, B. E., & Benjamin, S. G. (1995). A comparison of temperature and wind measurements from ACARS equipped aircraft and rawinsondes. Weather Forecasting, 10, 528–544.

    Google Scholar 

  • Seity, Y., Brousseau, P., Malardel, S., Hello, G., Benard, P., Bouttier, F., et al. (2011). The AROME–France convective-scale operational model. Monthly Weather Review, 139, 976–991.

    Google Scholar 

  • Selz, T., & Craig, G. C. (2015). Upscale Error growth in a high-resolution simulation of a summertime weather event over Europe. Monthly Weather Review, 143, 813–827.

    Google Scholar 

  • Serke, D., Hall, E., Bogna, J., Jordan, A., Abdo, S., Baker, K., et al. (2014). Supercooled liquid water content profiling case studies with a new vibrating wire sonde compared to a ground-based microwave radiometer. Atmospheric Research, 149, 77–87.

    Google Scholar 

  • Serke, D., Politovich, M., Reehorst, A., & Gaydos, A. (2008). The use of X-band radar to support the detection of in-flight icing hazards by the NASA Icing Remote Sensing System During AIRS-II. In Proc. SPIE 7088, #18, 2008.

  • Sharman, R. (2016). Nature of aviation turbulence. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 3–30). Berlin: Springer.

    Google Scholar 

  • Sharman, R., Cornman, L. B., Meymaris, G., Pearson, J., & Farrar, T. (2014). Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. Journal of Applied Meteorology Climatology, 53, 1416–1432. https://doi.org/10.1175/jamc-d-13-0329.1.

    Google Scholar 

  • Sharman, R., & Lane, T. (2016). Aviation turbulence: Processes, detection, prediction (p. 523). Berlin: Springer.

    Google Scholar 

  • Sharman, R., & Pearson, J. M. (2017). Prediction of energy dissipation rates for aviation turbulence. Part I: Forecasting non-convective turbulence. Journal of Applied Meteorology Climatology, 56, 317–337.

    Google Scholar 

  • Sharman, R., Tebaldi, C., Wiener, G., & Wolff, J. (2006). An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecasting, 21, 268–287.

    Google Scholar 

  • Sharman, R. D., & Trier, S. B. (2018). Influences of gravity waves on convectively induced turbulence (CIT): A review. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-1849-2.

    Google Scholar 

  • Sharman, R., Trier, S. B., Lane, T. P., & Doyle, J. D. (2012). Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophysical Research Letters, 39, L12803. https://doi.org/10.1029/2012gl051996.

    Google Scholar 

  • Sieglaff, J. M., Cronce, L. M., Feltz, W. F., Bedka, K. M., Pavolonis, M. J., & Heidinger, A. K. (2011). Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. Journal of Applied Meteorology Climatology, 50, 110–126.

    Google Scholar 

  • Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. V., & Bronaugh, D. (2013a). Climate extremes indices in the CMIP5 multimodel ensemble. Part 1: Model evaluation in the present climate. Journal of Geophysics Research Atmosphere, 118, 1716–1733.

    Google Scholar 

  • Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013b). Climate extreme indices in the CMIP5 multi-model ensemble. Part 2: Future projections. Journal of Geophysics Researc, 22, 22. https://doi.org/10.1002/jgrd.50188.

    Google Scholar 

  • Silva, W. L., Albuquerque Neto, F. A., França, G. B., & Matschinske, M. (2016). Conceptual model for runway change procedure in guarulhos international airport based on SODAR data. The Aeronautical Journal, 120(1227), 725–734. https://doi.org/10.1017/aer.2016.33.

    Google Scholar 

  • Simpson, J. J., Hufford, G. L., Pieri, D. C., & Berg, J. (2000). Failures in detecting volcanic ash from satellite-based technique. Remote Sensing of Environment, 72, 191–217.

    Google Scholar 

  • Simpson, J. J., Hufford, G. L., Servranckx, R., Berg, J., & Pieri, D. (2003). Airborne Asian dust: Case study of long-range transport and implications for the detection of volcanic ash. Weather Forecasting, 18, 121–141.

    Google Scholar 

  • Sims, D. L., Fidalgo, C. B., & Carty, T. C. (2000). Integrated Icing Diagnostic Algorithm assessment at regional airlines. In 9th conference on aviation, range, and aerospace meteorology. AMS 2000 Annual Meeting. Preprints, #4.16.

  • Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., et al. (2017). The global precipitation measurement (GPM) mission for science and society. Bulletin American Meteorology Society, 98, 1679–1695.

    Google Scholar 

  • Smith, W. L. (2014). 4-D cloud properties from passive satellite data and applications to resolve the flight icing threat to aircraft. PhD Dissertation, University of Wisconsin-Madison, July 22, p. 15.

  • Smith, T. M., Lakshmanan, V., Stumpf, G. J., Ortega, K. L., Hondl, K., Cooper, K., et al. (2016). Multi-radar multi-sensor (MRMS) severe weather and aviation products: initial operating capabilities. Bulletin American Meteorology Society, 97, 1617–1630.

    Google Scholar 

  • Smith, W. L., Minnis, P., Fleeger, C., Spangenberg, D., Palikonda, R., & Nguyen, L. (2012). Determining the flight icing threat to aircraft with single-layer cloud parameters derived from operational satellite data. Journal of Applied Meteorology Climatology, 51, 1794–1810.

    Google Scholar 

  • Soden, B. J., Ackerman, S. A., Starr, D. O. C., Melfi, S. H., & Ferrare, R. A. (1994). Comparison of upper tropospheric water vapor from GOES, Raman lidar, and cross-chain loran atmospheric sounding system measurements. Journal of Geophysics Research, 99(D10), 21005–21016.

    Google Scholar 

  • Sokol, Z., & Zacharov, P. (2012). Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity. Quarterly Journal of Royal Meteorological Society, 138, 1072–1082.

    Google Scholar 

  • Solheim, F., Godwin, J., & Ware, R. (1998). Passive ground-based remote sensing of atmospheric temperature, water vapor, and cloud liquid water profiles by a frequency synthesized microwave radiometer. Meterologische Zeitschrift, 7, 370–376.

    Google Scholar 

  • Sorenson, J. E. (1964). Synoptic patterns for clear air turbulence. UAL Meteorology Circular 56, 64 pp. Dept. of Atmospheric Science, Colorado State University, Fort Collins, CO 80523.

  • Spangenberg, D. A., Minnis, P., Bedka, S. T., Palikonda, R., Duda, D. P., & Rose, F. G. (2013). Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data. Geophysics Research Letters, 40, 595–600. https://doi.org/10.1002/grl.50168.

    Google Scholar 

  • Stano, G. T., Fuell, K. K., & Jedlovec, G. J. (2010). NASA SPoRT GOES-R Proving Ground activities. In Preprints, Sixth annual symp. on future national operational environmental satellite systems: NPOESS and GOES-R, Atlanta, GA, Amer. Meteor. Soc., 8.2. https://ams.confex.com/ams/90annual/techprogram/. Accessed 3 Jan 2019

  • Stickland, J. J. (1998). An assessment of two algorithms for automatic measurement and reporting of turbulence from commercial public transport aircraft (p. 42). Melbourne, Australia: Rep. to the ICAO METLINK Study Group, Bureau of Meteorology.

    Google Scholar 

  • Stobie, J., Moosakhanian, A., Jackson, P., & Brown, W. N. (2008). Evolution of FAA’s weather and radar processor (WARP) into the next generation air transportation system (NextGen). In 13th conference on aviation, range and aerospace meteorology, 21–24 January 2008, New Orleans, Amer. Met. Soc.

  • Stoelinga, M. T., & Warner, T. T. (1999). Nonhydrostatic, meso-beta scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. Journal of Applied Meteorology, 38, 385–404.

    Google Scholar 

  • Storer, L. N., Williams, P. D., & Joshi, M. M. (2017). Global response of clear-air turbulence to climate change. Geophysical Research Letters, 44, 9976–9984. https://doi.org/10.1002/2017GL074618.

    Google Scholar 

  • Strapp, J. W., Korolev, A., Ratvasky, R., Potts, A., Protat, P., May, A., & Ackerman, A., et al. (2016). The high ice water content study of deep convective clouds: Report on science and technical plan. Final Report. DOT/FAA/TC-14/31, p. 92. http://www.tc.faa.gov/its/worldpac/techrpt/tc14-31.pdf. Accessed 3 Jan 2019

  • Sumner, J., & Mason, C. (2006). A turbulence-based model for resolving velocity and temperature profiles in the atmospheric surface layer. Wind Energy, 30, 317–340. https://doi.org/10.1260/030952406779295462.

    Google Scholar 

  • Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., et al. (2014). Use of NWP for nowcasting convective precipitation: recent progress and challenges. Bulletin American Meteorology Society, 95, 409–426.

    Google Scholar 

  • Sun-Mack, S., Minnis, P., Smith, W. L., Hong, G., & Chen, Y. (2017). Detection of single and multilayer clouds in an artificial neural network approach. In Proc. SPIE 10424, remote sensing of clouds and the atmosphere XXII, 1042408 (13 October 2017); https://doi.org/10.1117/12.2277397.

  • Tafferner, A., Hauf, T., Leifeld, C., Hafner, T., Leykauf, H., & Voigt, U. (2003). ADWICE: advanced diagnosis and warning system for aircraft icing environments. Weather Forecasting, 18, 184–203.

    Google Scholar 

  • Tag, P. M., Bankert, R. L., & Brody, L. R. (2000). An AVHRR multiple cloud-type classification package. Journal of Applied Meteorological, 39, 125–134.

    Google Scholar 

  • Tan, I., & Storelvmo, T. (2016). Sensitivity study on the influence of cloud microphysical parameters on mixed-phase cloud thermodynamic phase partitioning in CAM5. Journal of Atmospheric Science, 73, 709–728.

    Google Scholar 

  • Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology Climatology, 46, 1141–1168.

    Google Scholar 

  • TC. (2004). Small and large aircraft; Aircraft critical surface contamination training for aircrew and ground crew. TP 10643E, 12/2004. Ottawa, Ont., Canada, p. 138.

  • Teixeira, J., et al. (2008). Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bulletin American Meteorology Society, 89, 453–458.

    Google Scholar 

  • Thobois, L, Cariou, J. P., & Gultepe, I. (2018). Review of lidar based applications for aviation weather. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-018-2058-8

  • Thompson, G., Bruintjes, R. T., Brown, B. G., & Hage, F. (1997). Intercomparison of in-flight icing algorithms. Part I: WISP94 real-time icing prediction and evaluation program. Weather Forecasting, 12, 878–889.

    Google Scholar 

  • Thompson, G., Politovich, M. K., & Rasmussen, R. M. (2017). A numerical weather model’s ability to predict characteristics of aircraft icing environments. Weather Forecasting, 32, 207–221.

    Google Scholar 

  • Tomita, H. (2008). New microphysical schemes with five and six categories by diagnostic generation of cloud ice. Journal of the Meteorological Society of Japan. In: Ser. II, Special Issue: The International Workshop on High-Resolution and Cloud Modeling, 2006, 86A, pp. 121–142.

  • Trier, S. B., Sharman, R. D., & Lane, T. P. (2012). Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Monthly Weather Review, 140, 2477–2496.

    Google Scholar 

  • Tucker, S. C., Senff, C. J., Weickmann, A. M., Brewer, W. A., Banta, R. M., Sandberg, S. P., et al. (2009). Doppler Lidar estimation of mixing height using turbulence, shear, and aerosol profiles. Journal of Atmosphere Oceanic Technology, 26, 673–688.

    Google Scholar 

  • Turcotte, M.-F., & Verret, R. (1999). In-flight icing and turbulence forecasts for aviation. In Proc. Sixth Workshop on Operational Meteorology, Halifax, NS, Canada, Canadian Meteorological and Oceanographic Society, pp. 53–56.

  • Turner, D. D., Clough, S. A., Liljegren, J. C., Clothiaux, E. E., Cady-Pereira, K., & Gaustad, K. L. (2007). Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 45, 3680–3690. https://doi.org/10.1109/TGRS.2007.903703.

    Google Scholar 

  • Turner, J., & Warren, D. E. (1989). Cloud track winds in the polar regions from sequences of AVHRR images. International Journal of Remote Sensing, 10, 695–703.

    Google Scholar 

  • Turp, D., & Gill, P. (2008). Developments in numerical clear air turbulence forecasting at the U.K. Met Office. In Preprints, 13th conf. on aviation, range and aerospace meteorology, New Orleans, LA, Amer. Meteor. Soc., P3.10A. http://ams.confex.com/ams/pdfpapers/131782.pdf. Accessed 3 Jan 2019

  • Uccellini, L. W. (1980). On the role of upper tropospheric jet streaks and leeside cyclogenesis in the development of low-level jets in the great plains. Monthly Weather Review, 108, 1689–1696.

    Google Scholar 

  • Uccellini, L. W., & Johnson, D. R. (1979). The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Monthly Weather Review, 107, 682–703.

    Google Scholar 

  • Van den Berg, G. P. (2008). Wind turbine power and sound in relation to atmospheric stability. Wind Energy, 11(2), 151–169. https://doi.org/10.1002/we.240.

    Google Scholar 

  • Van Den Broeke, M. S. (2016). Polarimetric variability of classic supercell storms as a function of environment. Journal of Applied Meteorology Climatology, 55, 1907–1925.

    Google Scholar 

  • Van Den Broeke, M. S., Tobin, D. M., & Kumjian, M. R. (2016). Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Weather and Forecasting, 31, 1179–1196.

    Google Scholar 

  • Velden, C., Daniels, J., Stettner, D., Santek, D., Key, J., Dunion, J., et al. (2005). Recent innovations in deriving tropospheric winds from meteorological satellites. Bulletin American Meteorology Society, 86, 205–224.

    Google Scholar 

  • Velden, C. S., Hayden, C. M., Nieman, S., Menzel, W. P., Wanzong, S., & Goerss, J. (1997). Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bulletin American Meteorology Society, 78, 173–195.

    Google Scholar 

  • Velden, C. S., Olander, T. L., & Wanzong, S. (1998). The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and case analysis. Monthly Weather Review, 126, 1202–1218.

    Google Scholar 

  • Verlinden, K. L., & Bright, D. R. (2017). Using the second-generation GEFS reforecasts to predict ceiling, visibility, and aviation flight category. Weather Forecasting, 32, 1765–1780.

    Google Scholar 

  • Vislocky, R. L., & Fritsch, J. M. (1995). Generalized additive models versus linear regression in generating probabilistic mos forecasts of aviation weather parameters. Weather Forecasting, 10, 669–680.

    Google Scholar 

  • Vislocky, R. L., & Fritsch, J. M. (1997). An automated, observations-based system for short-term prediction of ceiling and visibility. Weather Forecasting, 12, 31–43.

    Google Scholar 

  • Vivekanandan, J., Zhang, G., & Politovich, M. K. (2001). An assessment of droplet size and liquid water content derived from dual-wavelength radar measurements to the application of aircraft icing detection. Journal of Atmosphere Oceanic Technology, 18, 1787–1798.

    Google Scholar 

  • Vrancken, P. S. (2016). Airborne remote detection of turbulence with forward-pointing LIDAR. In R. D. Sharman & T. P. Lane (Eds.), Aviation turbulence: Processes, detection, and prediction (pp. 443–464). Berlin: Springer.

    Google Scholar 

  • Wade, C. G. (2003). A Multisensor Approach to Detecting Drizzle on ASOS. Journal of Atmospheric and Oceanic Technology, 20, 820–832. https://doi.org/10.1175/1520-0426(2003)020<0820:AMATDD>2.0.CO;2.

    Google Scholar 

  • Walker, J. R., MacKenzie, W. M., Mecikalski, J. R., & Jewett, C. P. (2012). An enhanced geostationary satellite-based convective initiation algorithm for 0–2-h nowcasting with object tracking. Journal of Applied Meteorology and Climatology, 51, 1931–1949.

    Google Scholar 

  • Wang, W., & Seaman, N. L. (1997). A Comparison Study of Convective Parameterization Schemes in aMesoscale Model. Monthly Weather Review, 125, 252–278. https://doi.org/10.1175/1520-0493(1997)125<0252:ACSOCP>2.0.CO;2.

    Google Scholar 

  • Wang, L., & Cao, C. (2008). On-orbit calibration assessment of AVHRR longwave channels on MetOp-A using IASI. IEEE Transactions on Geoscience and Remote Sensing, 46, 4005–4013.

    Google Scholar 

  • Wang, L., Han, Y., Tremblay, D., Weng, F., & Goldberg, M. (2012). Intercomparison of NPP/CrIS radiances with VIIRS, AIRS, and IASI: A post-launch calibration assessment. Earth Observing Missions and Sensors: Development, Implementation, and Characterization II. In H. Shimoda et al. Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 8528), 85280 J, https://doi.org/10.1117/12.978769.

  • Ware, R., Cimini, D., Campos, E., Giuliani, G., Albers, S., Nelson, M., et al. (2013). Thermodynamic and liquid profiling during the 2010 Winter Olympics. Atmosphere Research., 132–133, 278–290.

    Google Scholar 

  • Warner, T. T. (2011). Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge, p. 526.

  • Weber, M. E., & Stone, M. L. (1995). Low altitude wind shear detection using airport surveillance radars. IEEE Aerospace and Electronic Systems Magazine, 10, 3–9. https://doi.org/10.1109/62.387970.

    Google Scholar 

  • Weisman, M. L., Davis, C., Wang, W., Manning, K. W., & Klemp, J. B. (2008). Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather Forecasting, 23, 407–437.

    Google Scholar 

  • Wen, Y., Kirstetter, P., Gourley, J. J., Hong, Y., Behrangi, A., & Flamig, Z. (2017). Evaluation of MRMS Snowfall Products over the Western United States. Journal of Hydrometeorology, 18, 1707–1713.

    Google Scholar 

  • Westwater, E. (1978). The accuracy of water vapor and cloud liquiddeter minations by dual-frequency ground-based microwave radiometry. Radio Sci., 13, 677–685.

    Google Scholar 

  • Weygandt, S., Smirnova, T., Benjamin, S., Brundage, K., Sahm, S., Alexander, C., & Schwartz, B. (2009). The High Resolution Rapid Refresh (HRRR): An hourly updated convection resolving model utilizing radar reflectivity assimilation from the RUC/RR. In 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 15A.6.

  • Whiteman, D. N., Melfi, S. H., & Ferrare, R. A. (1992). Raman lidar system for the measurement of water vapor and aerosols in the earth’s atmosphere. Applied Optics, 31, 3068–3082.

    Google Scholar 

  • Wick, G., Hock, T., Neiman, P., Vömel, H., Black, M., & Spackman, J. (2018). The NCAR/NOAA Global Hawk Dropsonde System. Journal of Atmosphere Oceanic Technology, 22, 222. https://doi.org/10.1175/jtech-d-17-0225.1.

    Google Scholar 

  • Williams, J. K. (2014). Using random forests to diagnose aviation turbulence. Machine Learning, 95, 51–70. https://doi.org/10.1007/s10994-013-5346-7.

    Google Scholar 

  • Williams, P. D. (2016). Transatlantic flight times and climate change. Environmental Research Letters., 11(2), 024008. https://doi.org/10.1088/1748-9326/11/2/024008.

    Google Scholar 

  • Williams, P. D. (2017). Increased light, moderate, and severe clear-air turbulence in response to climate change. Advances in Atmospheric Sciences, 34, 576–586. https://doi.org/10.1007/s00376-017-6268-2.

    Google Scholar 

  • Williams, P. D., & Joshi, M. M. (2013). Intensification of winter transatlantic aviation turbulence in response to climate change. Nature. Climate Change., 3(7), 644–648. https://doi.org/10.1038/nclimate1866

    Google Scholar 

  • Williams, J. K., & Meymaris, G. (2016). Remote turbulence detection using ground-based Doppler radar, 2016: Aviation turbulence forecast verification. In R. Sharman & T. Lane (Eds.), Aviation turbulence: Processes, detection, prediction (pp. 149–177). Berlin: Springer.

    Google Scholar 

  • Wilson, J. W. (1966). Movement and predictability of radar echoes. National Severe Storms Laboratory Tech. Memo. ERTM-NSSL-28, p. 30.

  • Wilson, J. W., Crook, N. A., Mueller, C. K., Sun, J., & Dixon, M. (1998). Nowcasting thunderstorms: A status report. Bulletin American Meteorology Society, 79, 2079–2099.

    Google Scholar 

  • Wilson, J. W., Ebert, E., Saxen, T., Roberts, R., Mueller, C., Sleigh, M., et al. (2004). Sydney 2000 forecast demonstration project: Convective storm nowcasting. Weather Forecasting, 19, 131–150.

    Google Scholar 

  • Wilson, F. W., & Gramzow, R. H. (1991). The redesigned low level wind shear alert system. In Preprints, 4th Int. conf. on aviation weather systems, Paris, France, pp. 370–375.

  • Wilson, J. W., & Roberts, R. D. (2006). Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Monthly Weather Review, 134, 23–47.

    Google Scholar 

  • Wilson, J. W., Roberts, R. D., Kessinger, C., & McCarthy, J. (1984). Microburst structure and evaluation of Doppler radar for airport wind shear detection. Journal of Climate and Applications Meteorology, 23, 898–915.

    Google Scholar 

  • Wilson, J. W., & Wakimoto, R. M. (1982). The discovery of the downburst: T. T. Fijita’s contribution. Bulletin American Meteorology Society, 82(1), 49–62.

    Google Scholar 

  • Wirth, M. (2012). Measuring water vapor with differential absorption lidar. In U. Schumann (Ed.), Atmospheric physics—Background, methods, trends, prediction (pp. 465–476). Berlin: Springer.

    Google Scholar 

  • Wolfson, M. M., & Clark, D. A. (2006). Advanced aviation weather forecasts. The Lincoln Laboratory Journal, 16(1), 31–58.

    Google Scholar 

  • Wolfson, M. M., Delanoy, R. L., Forman, B. E., Hallowell, R. G., Pawlak, M. L., & Smith, P. D. (1994). Automated microburst wind-shear prediction. The Lincoln Laboratory Journal, 7(2), 399–426.

    Google Scholar 

  • Wolfson, M. M., Dupree, W. J., Rasmussen, R., Steiner, M., Benjamin, S., & Weygandt S. (2008). Consolidated storm prediction for aviation (CoSPA). In AMS 13th conference on aviation, range, and aerospace meteorology, New Orleans, LA, 2008.

  • Wong, M., Skamarock, W. C., Lauritzen, P. H., & Stull, R. B. (2013). A cell-integrated semi-lagrangian semi-implicit shallow-water model (CSLAM-SW) with conservative and consistent transport. Monthly Weather Review, 141, 2545–2560.

    Google Scholar 

  • Woodley, W. L., Henderson, T. J., Vonnegut, B., Gordon, G., Breidenthal, R., & Holle, S. M. (1991). Aircraft-produced ice particles (APIPs) in supercooled clouds and the probable mechanism for their production. Journal of Applied Meteorology, 30, 1469–1489.

    Google Scholar 

  • Wulfmeyer, V. (1998). Ground-based differential absorption lidar for water-vapor and temperature profiling: Development and specifications of a high-performance laser transmitter. Applied Optics, 37, 3804–3824.

    Google Scholar 

  • Wulfmeyer, V. (1999). Investigation of turbulent processes in the lower troposphere with water vapor DIAL and radar–RASS. Journal of Atmospheric Science, 56, 1055–1076.

    Google Scholar 

  • Wulfmeyer, V., & Bosenberg, J. (1996). Single-mode operation of an injection seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. Optics Letters, 21, 1150–1152.

    Google Scholar 

  • Wulfmeyer, V., & Bosenberg, J. (1998). Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications. Applied Optics, 37, 3825–3844.

    Google Scholar 

  • Wulfmeyer, V., Lehmann, S., Senff, C., & Schmitz, S. (1995). Injection seeded alexandrite ring laser: Performance and application in a water-vapor differential absorption lidar. Optics Letters, 20, 638–640.

    Google Scholar 

  • Wurman, J., Dowell, D., Richardson, Y., Markowski, P., Rasmussen, E., Burgess, D., et al. (2012). The second verification of the origins of rotation in tornadoes experiment: VORTEX2. Bulletin American Meteorology Society, 93, 1147–1170.

    Google Scholar 

  • Yang, B., Qian, Y., Lin, G., Leung, R., & Zhang, Y. (2012). Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model. Atmosphere Chemistry Physics, 12, 2409–2427. https://doi.org/10.5194/acp-12-2409-2012.

    Google Scholar 

  • Yang, J., Zhang, Z., Wei, C., Lu, F., & Guo, Q. (2017). Introducing the new generation of chinese geostationary weather satellites, fengyun-4. Bulletin American Meteorology Society, 98, 1637–1658. https://doi.org/10.1175/BAMS-D-16-0065.1.

    Google Scholar 

  • Yano, J., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J., Bengtsson, L., et al. (2018). Scientific challenges of convective-scale numerical weather prediction. Bulletin American Meteorology Society, 99, 699–710. https://doi.org/10.1175/BAMS-D-17-0125.1.

    Google Scholar 

  • Yost, C. R., Bedka, K. M., Minnis, P., Nguyen, L., Strapp, J. W., Palikonda, R., et al. (2017). A prototype method for diagnosing high ice water content probability using satellite imager data. Journal of Atmosphere Measure Technology. https://doi.org/10.5194/amt-2017-367.

    Google Scholar 

  • Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., et al. (2016). Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bulletin American Meteorology Society, 97, 621–637. https://doi.org/10.1175/bams-d-14-00174.1.

    Google Scholar 

  • Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., et al. (2011). National mosaic and multi-sensor QPE (NMQ) system: Description, results, and future plans. Bulletin American Meteorology Society, 92, 1321–1338. https://doi.org/10.1175/2011bams-d-11-00047.1.

    Google Scholar 

  • Zhou, B., & Du, J. (2010). Fog prediction from a multimodel mesoscale ensemble prediction system. Weather Forecasting, 25, 303–322.

    Google Scholar 

  • Zhou, B., Du, J., McQueen, J., & Dimego, G. (2009). Ensemble forecast of ceiling, visibility, and fog with NCEP Short-Range Ensemble Forecast system (SREF). In Preprints. Aviation, range, and aerospace meteorology special symp. on weatherair traffic management integration, Phoenix, AZ, Amer. Meteor.Soc., 4.5. http://www.emc.ncep.noaa.gov/.mmb/SREF/AMS_2009CV_fog.pdf.

  • Zhou, B., Du, J., McQueen, J., Dimego, G., Manikin, G., Ferrier, B., & Toth, Z., et al. (2004). An introduction to NCEP SREF aviation project. In 11th conference on aviation range and aerospace, Oct 4–8, Hyannis, MA, Amer. Meteor. Soc. Presentation, p. 10.

Download references

Acknowledgements

This review paper is funded by the various institutions representing co-authors given in the title, and received technical and funding support from ECCC and SAR offices in Canada that were related to fog and visibility issues. S. S. Yum is supported by the Research and Development Program for KMA Weather, Climate and Earth System Services (#2016-3100) of National Institute of Meteorological Sciences (NIMS). We also would like to thank for the reviewers for their comments to improve the manuscript, and specifically to one of the reviewers who made specific comments on satellite and radar based platforms to be used for aviation meteorology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Gultepe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gultepe, I., Sharman, R., Williams, P.D. et al. A Review of High Impact Weather for Aviation Meteorology. Pure Appl. Geophys. 176, 1869–1921 (2019). https://doi.org/10.1007/s00024-019-02168-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02168-6

Keywords

Navigation