Skip to main content
Log in

Tides in the Black Sea: Observations and Numerical Modelling

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Longterm hourly data from 28 tide gauges were used to examine the main features of tides in the Black Sea. The tides in this basin are directly caused by tide-generating forces and the semidiurnal tides prevail over diurnal tides. Based on the Princeton Ocean Model (POM), a numerical model of tides in the Black Sea and adjacent Sea of Azov was developed and found to be in good agreement with tide gauge observations. Detailed tidal charts for amplitudes and phase lags of the major tidal harmonics in these two seas were constructed. The results of the numerical modelling and observations reveal for the semidiurnal tides the presence of an amphidromy with clockwise rotation and another one with counterclockwise rotation for the diurnal tides, both located in the central part of the sea near the Crimean Peninsula. Therefore, for this part of the sea the amplitudes of harmonics M2 and K1 are less than 0.1 cm. Relatively larger M2 amplitudes are observed on the east and west coasts of the sea (2–3 cm). The maximum amplitude of the harmonic M2 was found at Karkinit Bay—up to 4.5 cm—while the maximum tidal range varies from 1 cm near the Crimean Peninsula to 18–19 cm in the Dnieper–Bug Estuary and Karkinit Bay. Radiational tides, initiated mainly by sea breezes, make an important contribution to the formation of tidal oscillations in the Dnieper–Bug Estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpar, B., & Yüce, H. (1998). Sea-level variations and their interactions between the Black Sea and the Aegean Sea. Estuarine, Coastal and Shelf Science, 46(5), 609–619.

    Article  Google Scholar 

  • Book, J. W., Jarosz, E., Beşiktepe, Ş, & Cambazoğlu, M. K. (2010). Observations of tidal energy and tidal fluxes through the Turkish Straits System. EGU General Assembly Conference Abstracts, 12, 5634. http://meetingorganizer.copernicus.org/EGU2010/EGU2010-5634.pdf.

  • Defant, A. (1961). Physical oceanography (Vol. II). Oxford: Pergamon Press.

    Google Scholar 

  • Egbert, G. D., & Erofeeva S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2.

  • Endrös, A. (1932). Die Seiches des Schwarzen und Asowschen Meeres und die dortigen Hubhöhen der Gezeiten. Annalen der Hydrographie Maritimen Meteorologie, 60, 442–453.

    Google Scholar 

  • Engel, M. (1974). Hydrodynamish-numerische Ermittlung von Bewegungsvorgängen im Schwarzen Meer. Mitteilungen des Instituts für Meereskunde der Universität Hamburg, 22, 1–72.

    Google Scholar 

  • Fomicheva, L. A., Rabinovich, A. B., & Demidov, A. N. (1991). The sea level (in Russian). In: The Project “Seas of the Soviet Union.” Hydrometeorology and Hydrochemistry of Seas of Soviet Union, Vol. 4: The Black Sea. No. 1 (329–354) St. Petersburg: Gidrometeoizdat.

  • German, V Kh. (1970). Spectral analysis of water level oscillations in the Azov, Black, and Caspian seas within the range from one cycle over few hours until one cycle over few days (in Russian). Proceedings of State Oceanographic Institute, 103, 52–73.

    Google Scholar 

  • Goryachkin, Yu N, & Ivanov, V. A. (2006). The Black Sea level: Past, present, and future. Sevastopol: Marine Hydrophysical Institute, National Academy of Sciences of Ukraine. (in Russian).

    Google Scholar 

  • Harris, R. A. (1897–1907). Manual of tides: appendices to reports of the U.S. coast and geodetic survey. Washington, DC: Government Printing Office.

  • Ivanov, A. I. (2015). Harmonic analysis of tide gauge data 2013–2014 in Bulgaria. Bulgarian Chemical Communications, 47, 343–348.

    Google Scholar 

  • Ivanov, V. A., & Yastreb, V. P. (1989). Fluctuations of the Black Sea level. Water Resources, 16(2), 173–179.

    Google Scholar 

  • Krsteva, E. (1981). Diurnal amplitudes of changes of the Black Sea level near Varna and Burgas (in Bulgarian). Problemi na Geographiata (Bulgarian), 2, 15–24.

    Google Scholar 

  • Kulikov, E. A., Fain, I. V., & Medvedev, I. P. (2015). Numerical modeling of anemobaric fluctuations of the Baltic Sea level. Russian Meteorology and Hydrology, 40(2), 100–108.

    Article  Google Scholar 

  • Kulikov, E. A., Rabinovich, A. B., & Carmack, E. C. (2004). Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. Journal of Geophysical Research—Oceans, 109, C05020. https://doi.org/10.1029/2003jc001986.

    Article  Google Scholar 

  • Kurchatov, I. V. (1925). Seiches in the Black and Azov seas (in Russian). Izvestia Tsentralnogo Gidromet Byuro, 4, 149–158.

    Google Scholar 

  • LeBlond, P. H., & Mysak, L. (1978). Waves in the ocean. New York: Elsevier.

    Google Scholar 

  • Maramzin, V. Ya. (1985). Calculation of seiche oscillations by finite element method in the free form basins (in Russian). In V. M. Kaistrenko & A. B. Rabinovich (Eds.), Theoretical and experimental studies of the long-wave processes (pp. 104–114). Vladivostok: Far Eastern Scientific Center, Academy of Sciences of Soviet Union.

    Google Scholar 

  • Medvedev, I. P., & Kulikov, E. A. (2016). Spectrum of mesoscale sea level oscillations in the northern Black Sea: Tides, seiches, and inertial oscillations. Oceanology, 56(1), 6–13. https://doi.org/10.1134/S0001437016010094.

    Article  Google Scholar 

  • Medvedev, I. P., Kulikov, E. A., & Rabinovich, A. B. (2017). Tidal oscillations in the Caspian Sea. Oceanology, 57(3), 360–375. https://doi.org/10.1134/S0001437017020138.

    Article  Google Scholar 

  • Medvedev, I. P., Rabinovich, A. B., & Kulikov, E. A. (2013). Tidal oscillations in the Baltic Sea. Oceanology, 53(5), 526–538. https://doi.org/10.1134/S0001437013050123.

    Article  Google Scholar 

  • Medvedev, I. P., Rabinovich, A. B., & Kulikov, E. A. (2016). Tides in three enclosed basins: The Baltic, Black and Caspian seas. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2016.00046.

    Article  Google Scholar 

  • Mellor, G. L. (2004). Users guide for a three-dimensional, primitive equation, numerical ocean model. Program in atmospheric and oceanic sciences. Princeton: Princeton University.

    Google Scholar 

  • Mungov, G. (1981). Study of the fluctuations of the sea level along the Bulgarian coast in medium-scale frequency range (in Bulgarian). Khidrologiya i Meteorologiya, 2, 20–21.

    Google Scholar 

  • Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society A., 259(1105), 533–581.

    Article  Google Scholar 

  • Orlov, A. Ya. (1923). About tides of the Black Sea in Odessa and Sevastopol (in Russian). Zapiski po gidrografii, 47, 141–161.

    Google Scholar 

  • Parker, B. B. (2007). Tidal analysis and prediction. NOAA spec. publ. NOS CO-OPS 3. Maryland: Silver Spring.

    Google Scholar 

  • Proudman, J. (1928). On the tides in a flat semicircular sea of uniform depth. Monthly Notices of the Royal Astronomical Society, Geophysical Supplement, 2, 32–43.

    Article  Google Scholar 

  • Pugh, D., & Woodworth, P. (2014). Sea-level science: Understanding tides, surges, tsunamis and mean sea-level changes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Rabinovich, A. B., & Medvedev, I. P. (2015). Radiational tides at the southeastern coast of the Baltic Sea. Oceanology, 55(3), 319–326. https://doi.org/10.1134/S0001437015030133.

    Article  Google Scholar 

  • Stammer, D., et al. (2014). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3), 243–282.

    Article  Google Scholar 

  • Sterneck, R. V. (1912). Über die Gezeiten des Schwarzen Meeres. Anzeiger der Kaiserlichen Akademie der Wissenschaften. Wien (17 Oct.).

  • Sterneck, R. V. (1922). Schematische Theorie der Gezeiten des Schwarzen Meeres. Sitzungsberichte, Akademie der Wissenschaften in Wien, Matematisch-naturwissenschaftliche Klasse, 131, 81–104.

    Google Scholar 

  • Sterneck, R. V. (1926). Harmonische Analyse und Theorie der Gezeiten des Schwarzen Meeres. Annalen der Hydrographie Maritimen Meteorologie, 54, 289–296.

    Google Scholar 

  • Thomson, R. E., & Emery, W. J. (2014). Data analysis methods in physical oceanography (3rd ed.). New York: Elsevier.

    Google Scholar 

  • Yüce, H. (1993). Water level variations in the Sea of Marmara. Oceanologica Acta, 16(4), 335–340.

    Google Scholar 

  • Yüce, H. (1996). On the variability of Mediterranean water flow into the Black Sea. Continental Shelf Research, 16, 1399–1413. https://doi.org/10.1016/0278-4343(95)00078-X.

    Article  Google Scholar 

  • Zalesny, V. B., Gusev, A. V., Lukyanova, A. N., & Fomin, V. V. (2016). Numerical modelling of sea currents and tidal waves. Russian Journal of Numerical Analysis and Mathematical Modelling, 31(2), 115–125.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Evgueni Kulikov, Alexander Rabinovich, Alisa Medvedeva (all from P.P. Shirshov Institute of Oceanology, Moscow, Russia), and Alena Sokolyanskaya for useful discussions and helpful comments. Also, the author gratefully acknowledges Fred Stephenson (Institute of Ocean Sciences, Sidney, BC, Canada), Philip Woodworth (National Oceanography Centre, Liverpool, UK), and Svetlana Erofeeva (COAS, Oregon State University, Corvallis, Oregon, USA) for their very interesting and constructive comments. The results of Sect. 6 were obtained in the framework of the State assignment of FASO Russia (Theme no. 0149-2018-0015). The studies presented in Sects. 3 and 4 were supported by the RFBR grant (Project no. 16-35-60071) and in Sect. 5 by the RSF grant (Project no. 14-50-00095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor P. Medvedev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, I.P. Tides in the Black Sea: Observations and Numerical Modelling. Pure Appl. Geophys. 175, 1951–1969 (2018). https://doi.org/10.1007/s00024-018-1878-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1878-x

Keywords

Navigation