Skip to main content
Log in

Spatial Evaluation and Verification of Earthquake Simulators

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed \(m>6.0\) earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anagnos, T., & Kiremidjian, A. S. (1988). A review of earthquake occurrence models for seismic hazard analysis. Probabilistic Engineering Mechanics, 3(1), 3–11.

    Article  Google Scholar 

  • Båth, M. (1965). Lateral inhomogeneities of the upper mantle. Tectonophysics, 2(6), 483–514.

    Article  Google Scholar 

  • Chernick, M. R. (2011). Bootstrap methods: A guide for practitioners and researchers (vol. 619). Hoboken, New jersey: Wiley.

  • Davison, A. C., & Hinkley, D. (1997). Bootstrap methods and their applications. Cambridge: Cambridge Series in Statistical and Probabilistic Mathematics.

    Book  Google Scholar 

  • Felzer, K. R., & Brodsky, E. E. (2006). Decay of aftershock density with distance indicates triggering by dynamic stress. Nature, 441(7094), 735–738.

    Article  Google Scholar 

  • Field, E. H. (2007a). Overview of the working group for the development of regional earthquake likelihood models (relm). Seismological Research Letters, 78(1), 7–16.

    Article  Google Scholar 

  • Field, E. H. (2007b). A summary of previous working groups on california earthquake probabilities. Bulletin of the Seismological Society of America, 97(4), 1033–1053.

    Article  Google Scholar 

  • Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., et al. (2014). Uniform california earthquake rupture forecast, version 3 (ucerf3)the time-independent model. Bulletin of the Seismological Society of America, 104(3), 1122–1180.

    Article  Google Scholar 

  • Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V., Jordan, T. H., et al. (2009). Uniform california earthquake rupture forecast, version 2 (ucerf 2). Bulletin of the Seismological Society of America, 99(4), 2053–2107.

    Article  Google Scholar 

  • Glasscoe, M., Rosinski, A., Vaughan, D., & Morentz, J. (2014). Disaster response and decision support in partnership with the california earthquake clearinghouse. In AGU Fall Meeting Abstracts (vol. 1, p. 07).

  • Gutenberg, B. & Richter, C. (1954). Seismicity of the earth and associated phenomena. Princeton, New Jersey: Princeton University Press.

  • Jolliffe, I. (2014). Principal Component Analysis. Wiley StatsRef: Statistics Reference Online.

  • Jolliffe, I. T., & Stephenson, D. B. (2003). Forecast verification: a practitioner’s guide in atmospheric science. Chichester, West Sussex, England: Wiley

  • Kagan, Y. Y. (2002). Aftershock zone scaling. Bulletin of the Seismological Society of America, 92(2), 641–655.

    Article  Google Scholar 

  • Kajitani, Y., Chang, S. E., & Tatano, H. (2013). Economic impacts of the 2011 tohoku-oki earthquake and tsunami. Earthquake Spectra, 29(s1), S457–S478.

    Article  Google Scholar 

  • Lee, T.-T., Turcotte, D. L., Holliday, J. R., Sachs, M. K., Rundle, J. B., Chen, C.-C., et al. (2011). Results of the regional earthquake likelihood (relm) test of earthquake forecasts in california. Proceedings of the National Academy of Sciences, 108(40), 16533–16538.

    Article  Google Scholar 

  • Molchan, G. M. (1997). Earthquake prediction as a decision-making problem. Pure and Applied Geophysics, 149(1), 233–247.

    Article  Google Scholar 

  • Nanjo, K., Holliday, J., Chen, C.-C., Rundle, J., & Turcotte, D. (2006). Application of a modified pattern informatics method to forecasting the locations of future large earthquakes in the central japan. Tectonophysics, 424(3), 351–366.

    Article  Google Scholar 

  • Nanjo, K. Z. (2010). Earthquake forecast models for italy based on the ri algorithm. Annals of Geophysics, 53(3), 117–127.

    Google Scholar 

  • Ogata, Y. (1989). Statistical model for standard seismicity and detection of anomalies by residual analysis. Tectonophysics, 169(1), 159–174.

    Article  Google Scholar 

  • Ogata, Y., & Zhuang, J. (2006). Space-time etas models and an improved extension. Tectonophysics, 413(1), 13–23.

    Article  Google Scholar 

  • Parsons, T. (2008). Appendix c: Monte carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for california. US Geological Survey Open File Report, 1437-C, 32.

  • Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel, A. D., et al. (2014). Documentation for the 2014 update of the united states national seismic hazard maps. Technical report, US Geological Survey.

  • Pollitz, F. F. (2012). Viscosim earthquake simulator. Seismological Research Letters, 83(6), 979–982.

    Article  Google Scholar 

  • Richards-Dinger, K., & Dieterich, J. H. (2012). Rsqsim earthquake simulator. Seismological Research Letters, 83(6), 983–990.

    Article  Google Scholar 

  • Rundle, J. B., Holliday, J. R., Yoder, M., Sachs, M. K., Donnellan, A., Turcotte, D. L., et al. (2011). Earthquake precursors: activation or quiescence? Geophysical Journal International, 187(1), 225–236.

    Article  Google Scholar 

  • Rundle, J. B., Turcotte D. L., Shcherbakov R., Klein W., & Sammis C. (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of Geophysics, 41, 1019. doi:10.1029/2003RG000135.

    Article  Google Scholar 

  • Sachs, M., Turcotte, D. L., Holliday, J. R., & Rundle, J. (2012a). Forecasting earthquakes: The relm test. Computing in Science & Engineering, 14(5), 43–48.

    Article  Google Scholar 

  • Sachs, M., Yoder, M., Turcotte, D., Rundle, J., & Malamud, B. (2012b). Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and soc models. The European Physical Journal-Special Topics, 205(1), 167–182.

    Article  Google Scholar 

  • Sachs, M. K., Heien, E. M., Turcotte, D. L., Yikilmaz, M. B., Rundle, J. B., & Kellogg, L. H. (2012c). Virtual california earthquake simulator. Seismological Research Letters, 83(6), 973–978.

    Article  Google Scholar 

  • Schorlemmer, D., Gerstenberger, M., Wiemer, S., Jackson, D., & Rhoades, D. (2007). Earthquake likelihood model testing. Seismological Research Letters, 78(1), 17–29.

    Article  Google Scholar 

  • Schorlemmer, D., & Gerstenberger, M. C. (2007). Relm testing center. Seismological Research Letters, 78(1), 30–36.

    Article  Google Scholar 

  • Schultz, K. W., Sachs, M. K., Heien, E. M., Yoder, M. R., Rundle, J. B., Turcotte, D. L., & Donnellan, A. (2015). Virtual quake: Statistics, co-seismic deformations and gravity changes for driven earthquake fault systems. In International Association of Geodesy Symposia (pp. 1–9). doi:10.1007/1345_2015_134.

  • Shcherbakov, R., & Turcotte, D. L. (2004). A modified form of båth’s law. Bulletin of the Seismological Society of America, 94(5), 1968–1975.

    Article  Google Scholar 

  • Shcherbakov, R., Turcotte D. L., & Rundle J. B. (2004). A generalized Omori’s law for earthquake aftershock decay. Geophysical Research Letters, 31, L11613. doi:10.1029/2004GL019808.

    Article  Google Scholar 

  • Shcherbakov, R., Turcotte, D. L., & Rundle, J. B. (2006). Scaling properties of the parkfield aftershock sequence. Bulletin of the Seismological Society of America, 96(4B), S376–S384.

    Article  Google Scholar 

  • Tullis, T. E., Richards-Dinger, K., Barall, M., Dieterich, J. H., Field, E. H., Heien, E. M., et al. (2012). A comparison among observations and earthquake simulator results for the allcal2 california fault model. Seismological Research Letters, 83(6), 994–1006.

    Article  Google Scholar 

  • Turcotte, D. L., Holliday J. R., & Rundle J. B. (2007). BASS, an alternative to ETAS. Geophysical Research Letters, 34, L12303. doi:10.1029/2007GL029696.

    Article  Google Scholar 

  • Ward, S. N. (2012). Allcal earthquake simulator. Seismological Research Letters, 83(6), 964–972.

    Article  Google Scholar 

  • Ward, S. N., & Goes, S. D. (1993). How regularly do earthquakes recur? a synthetic seismicity model for the san andreas fault. Geophysical Research Letters, 20(19), 2131–2134.

    Article  Google Scholar 

  • Yoder, M. R., Rundle, J. B., & Glasscoe, M. T. (2015a). Near-field ETAS constraints and applications to seismic hazard assessment. Pure and Applied Geophysics, 172(8), 2277–2293.

    Article  Google Scholar 

  • Yoder, M. R., Schultz, K. W., Heien, E. M., Rundle, J. B., Turcotte, D. L., Parker, J. W., & Donnellan, A. (2015b). The Virtual Quake earthquake simulator: a simulation-based forecast of the El Mayor-Cucapah region and evidence of predictability in simulated earthquake sequences. Geophysical Journal International, 203(3), 1587–1604.  

    Article  Google Scholar 

  • Yoder, M. R., Turcotte, D. L., & Rundle, J. (2011). Record-breaking earthquake precursors. PhD thesis.

  • Zechar, J. D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F., Maechling, P. J., et al. (2010). The collaboratory for the study of earthquake predictability perspective on computational earthquake science. Concurrency and Computation: Practice and Experience, 22(12), 1836–1847.

    Article  Google Scholar 

Download references

Acknowledgments

JMW and JBR would like to acknowledge support for this research from NASA Grant NNX12A22G and SCEC/USC Grant USC32774854-NSF FFT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Max Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.M., Yoder, M.R., Rundle, J.B. et al. Spatial Evaluation and Verification of Earthquake Simulators. Pure Appl. Geophys. 174, 2279–2293 (2017). https://doi.org/10.1007/s00024-016-1385-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1385-x

Keywords

Navigation