Skip to main content
Log in

Two-Dimensional Coupled Distributed Hydrologic–Hydraulic Model Simulation on Watershed

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The objective of this work is to develop a coupled distributed model that enables to analyze water movement in watershed as well as analyze the rainfall-runoff. More specifically, it allows to estimate the various hydrologic water cycle variables at each point of the watershed. In this paper, we have carried out a coupled model of a distributed hydrological and two-dimensional hydraulic models. We have incorporated a hydrological rainfall-runoff model calculated by cell based on the Soil Conservation Service (SCS) method to the hydraulic model, leaving it for the hydraulic model (GUAD2D) to conduct the transmission to downstream cells. The goal of the work is demonstrate the improved predictive capability of the coupled Hydrological-Hydraulic models in a watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. S is the maximum possible retention of the soil expressed in depth units (mm or in).

  2. Initial surface moisture storage capacity, initial abstraction depth units (mm or in).

References

  • E. Abazi. Modelling Floods in Wide Rivers Using Sobek 1D2D: A Case Study for the Elbe River. Unesco-IHE, 2005.

  • A. Bermúdez, A. Dervieux, J-A Desideri, and M. E. Vázquez. Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Computer methods in applied mechanics and engineering, 155(1):49–72, 1998.

  • A. Bermúdez and M. E. Vázquez. Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids, 23(8):1049–1071, 1994.

  • K.J. Beven and Michael J. Kirkby. A physically based, variable contributing area model of basin hydrology. un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24(1):43–69, 1979.

  • D. B. Booth, D. Hartley, and R. Jackson. Forest cover, impervious-surface area, and the mitigation of stormwater impacts1. JAWRA Journal of the American Water Resources Association, 38(3):835–845, 2002.

  • P. Brufau, M.E. Vázquez-Cendón, and P. García-Navarro. A numerical model for the flooding and drying of irregular domains. International Journal for Numerical Methods in Fluids, 39(3):247–275, 2002.

  • E. Campos, M. Rodríguez, S. Cordero, S. González, A. Moreno, L. Martínez, V. Bertolín, L. Altarejos, P. Pérez, and E. Martínez. Análisis de la inundabilidad producida por torrentes y escorrentías en el entorno urbano de alginet y su desagüe a la albufera. JIA, 2004.

  • E. Campos, M. Rodríguez, S. Cordero, S. González, A. Moreno, L. Martínez, V. Bertolín, L. Altarejos, P. Pérez, and E. Martínez. Propuesta de cálculo de la VID en un entorno urbano y plano con un modelo de cálculo simultáneo hidrológico distribuido e hidráulico bidimensional (Dinámica fluvial),(Monográfico: Modelos numéricos en dinámica fluvial). JIA, 2004.

  • V. T. Chow, D.R. Maidment, and L.W. Mays. Hidrología aplicada. Mc Graw-Hill Interamericana, 1994.

  • R. Cronshey. Urban hydrology for small watersheds. Technical report, US Dept. of Agriculture, Soil Conservation Service, Engineering Division, 1986.

  • J.A. Cunge, F.M. Holly, and A. Verwey. Practical aspects of computational river hydraulics. Pitma, London, xvi:407–415, 1980.

  • Ministerio de Obras Públicas y Urbanismo. Instruccin 5.2-IC de Denaje Superficial de Carreteras. 1990.

  • M. de Saint-Venant. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à líntroduction des marées dans leur lit. C. R. Acad. Sci. Paris, 73:147–154, 1871.

  • M. Ferrer-Juliá, J. Iglesias, A. Cerrillo, A. Vizcaino, E. Martínez, L. Ardiles, and A. López-Peláez. Generación de cartografía geomorfológica con datos lidar para los estudios de inundabilidad. 2009.

  • L. Garrote, F. Laguna, and J. Lorenzo. Comparación entre distintos modelos comerciales. Jornadas Técnicas sobre Hidráulica Fluvia, CEDEX, p 203, 2008.

  • S.K. Gudonov. Finite difference methods for the computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 47:271–306, 1959.

  • R. E. Horton. Approach toward a physical interpretation of infiltration capacity. Soil Sci. Soc. Am. J, 5, 339–417,1940.

  • R. J. LeVeque. Balancing source terms and flux gradients in high-resolution godunov methods: the quasi-steady wave-propagation algorithm. Journal of computational physics, 146(1):346–365, 1998.

  • J. L. López, J. Alavez-Ramírez, and J. L. H. López. Solución numérica del modelo de saint-venant vía volúmenes finitos. Revista de Ciencias Básicas UJAT, 8(2):34–53, 2009.

  • R. Manning. On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 20:161–207, 1891.

  • T. Maurer. Catflow, a physically based distributed catchment model, 1997.

  • E.M. Morris. Forecasting flood flows in grassy and forested basins using a deterministic distributed mathematical model, 129. 1980.

  • J. Murillo, J. Burguete, P. Brufau, and P. García-Navarro. Coupling between shallow water and solute flow equations: analysis and management of source terms in 2d. International journal for numerical methods in fluids, 49(3):267–299, 2005.

  • J. Murillo, P. García-Navarro, P. Brufau, and J. Burguete. Extension of an explicit finite volume method to large time steps (cfl >1): application to shallow water flows. International journal for numerical methods in fluids, 50(1):63–102, 2006.

  • F. Olivera, M. Rodriguez, and J. Murillo. Floodplain delineation of the ranillas meander in zaragoza using guad-2d. In: World Environmental and Water Resources Congress 2008@ sAhupuaA, p 1. ASCE, 2008.

  • O. Palacios-Vélez and B. Cuevas-Renaud. Transformation of tin data into a kinematic cascade. Transaction American Geophysical Union, 1989.

  • J R., Philip The theory of infiltration: 1. The infiltration equation and its solution., Soil science, 83, 5, 345–358,1957.

  • P-A. Raviart and E. Godlewsky. Numerical approximation of hyperbolic systems of conservation laws, 118. Springer, 1996.

  • J. C. Refsgaard and B. Storm. Mike-she. vp singh, computer models of watershed hydrology. Water Res. Publications, xvi:809–846, 1995.

  • P. L. Roe. Approximate riemann solvers, parameter vectors, and difference schemes. Journal of computational physics, 43(2):357–372, 1981.

  • C.C.M. Rogers, K.J. Beven, E.M. Morris, and M.G. Anderson. Sensitivity analysis, calibration and predictive uncertainty of the institute of hydrology distributed model. Journal of hydrology, 81(1):179–191, 1985.

  • J.M. Ruiz. Modelo distribuido para la evalución de recursos hídricos (modelo SIMPA). PhD Thesis, 1999.

  • S.A. Schroeder. Reliability of scs curve number method on semi-arid, reclaimed minelands. International Journal of Surface Mining and Reclamation, 8(2):41–45, 1994.

  • J. J. Stoker. Water waves: The mathematical theory with applications, 36. Wiley, 2011.

  • V. A. Tsihrintzis and R. Hamid. Urban stormwater quantity/quality modeling using the scs method and empirical equations1. JAWRA Journal of the American Water Resources Association, 33(1):163–176, 1997.

  • P. Vanderkimpen, E. Melger, and P. Peeters. Flood modeling for risk evaluation: a mike flood vs. sobek 1d2d benchmark study. 2008.

  • M. E. Vázquez-Cendón. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. Journal of Computational Physics, 148(2):497–526, 1999.

  • B. Yu. Theoretical justification of scs method for runoff estimation. Journal of irrigation and drainage engineering, 124(6):306–310, 1998.

Download references

Acknowledgments

M. Cea wishes to thank the hospitality of colleagues at ICMAT ( CESIC-UAM-UCM-UC3M) in Madrid, Spain, where this work was started during the course 2013–2014. Finally, thanks to Department of Fluid Mechanics the University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Cea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cea, M., Rodriguez, M. Two-Dimensional Coupled Distributed Hydrologic–Hydraulic Model Simulation on Watershed. Pure Appl. Geophys. 173, 909–922 (2016). https://doi.org/10.1007/s00024-015-1196-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1196-5

Keywords

Navigation