Skip to main content
Log in

Dynamic Development of Hydrofracture

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Many natural examples of complex joint and vein networks in layered sedimentary rocks are hydrofractures that form by a combination of pore fluid overpressure and tectonic stresses. In this paper, a two-dimensional hybrid hydro-mechanical formulation is proposed to model the dynamic development of natural hydrofractures. The numerical scheme combines a discrete element model (DEM) framework that represents a porous solid medium with a supplementary Darcy based pore-pressure diffusion as continuum description for the fluid. This combination yields a porosity controlled coupling between an evolving fracture network and the associated hydraulic field. The model is tested on some basic cases of hydro-driven fracturing commonly found in nature, e.g., fracturing due to local fluid overpressure in rocks subjected to hydrostatic and nonhydrostatic tectonic loadings. In our models we find that seepage forces created by hydraulic pressure gradients together with poroelastic feedback upon discrete fracturing play a significant role in subsurface rock deformation. These forces manipulate the growth and geometry of hydrofractures in addition to tectonic stresses and the mechanical properties of the porous rocks. Our results show characteristic failure patterns that reflect different tectonic and lithological conditions and are qualitatively consistent with existing analogue and numerical studies as well as field observations. The applied scheme is numerically efficient, can be applied at various scales and is computational cost effective with the least involvement of sophisticated mathematical computation of hydrodynamic flow between the solid grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adachi, J., E. Siebrits, A. Peirce, and J. Desroches (2007), Computer Simulation of Hydraulic Fractures, International Journal of Rock Mechanics and Mining Sciences, 44(5), 739–757.

  • Beetstra, R., M. A. van der Hoef, and J. A. M. Kuipers (2007), Drag Force of Intermediate Reynolds Number Flow Past Mono- and Bidisperse Arrays of Spheres, AIChE Journal, 53(2), 489–501.

  • Biot, M. A., L. Masse, and W. L. Medlin (1986), A Two-Dimensional Theory of Fracture Propagation, SPE Production Engineering, 1(1), 17–30.

  • Bons, P. D., D. Koehn, and M. W. Jessell (2007), Microdynamics Simulation, Springer.

  • Boone, T. J., and A. R. Ingraffea (1990), A Numerical Procedure for Simulation of Hydraulically-Driven Fracture Propagation in Poroelastic Media, International Journal for Numerical and Analytical Methods in Geomechanics, 14(1), 27–47.

  • Bruno, M. S., and F. M. Nakagawa (1991), Pore Pressure Influence on Tensile Fracture Propagation in Sedimentary Rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 28(4), 261–273.

  • Cleary, J. M., and Illinois State Geological Survey. (1958), Hydraulic Fracture Theory, [s.n.], Urbana.

  • Cleary, M. P., and S. K. Wong (1985), Numerical Simulation of Unsteady Fluid Flow and Propagation of a Circular Hydraulic Fracture, International Journal for Numerical and Analytical Methods in Geomechanics, 9(1), 1–14.

  • Cuss, R. J., E. H. Rutter, and R. F. Holloway (2003), The Application of Critical State Soil Mechanics to the Mechanical Behaviour of Porous Sandstones, International Journal of Rock Mechanics and Mining Sciences, 40(6), 847–862.

  • Daneshy, A. A. (1973), On the Design of Vertical Hydraulic Fractures, SPE Journal of Petroleum Technology, 25(1), 83–97.

  • Denlinger, R. P., and R. M. Iverson (2001), Flow of Variably Fluidized Granular Masses across Three-Dimensional Terrain 2. Numerical Predictions and Experimental Tests, J. Geophys. Res., 106(B1), 553–566.

  • Doe, T. W., and G. Boyce (1989), Orientation of Hydraulic Fractures in Salt under Hydrostatic and Non-Hydrostatic Stresses, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6), 605–611.

  • Engelder, T., and A. Lacazette (1990), Natural Hydraulic Fracturing, paper presented at Rock Joints: Proceedings of the international symposium on rock joints, A.A. Balkema, Rotterdam, Loen, Norway.

  • Flekkøy, E. G., A. Malthe-Sorenssen, and B. Jamtveit (2002), Modeling Hydrofracture, J Geophys Res-Sol Ea, 107(B8), 2151.

  • Fyfe, W. S., N. J. Price, and A. B. Thompson (1978), Fluids in the Earth’s Crust: Their Significance in Metamorphic, Tectonic, and Chemical Transport Processes, Elsevier Scientific Pub. Co, Amsterdam.

  • Gerogiannopoulos, N. G., and E. T. Brown (1978), The Critical State Concept Applied to Rock, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(1), 1–10.

  • Gidaspow, D. (1994), Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions, Academic Press, San Diego.

  • Gordeyev, Y. N., and A. F. Zazovsky (1992), Self-Similar Solution for Deep-Penetrating Hydraulic Fracture Propagation, Transport in Porous Media, 7(3), 283–304.

  • Goren, L., E. Aharonov, D. Sparks, and R. Toussaint (2010), Pore Pressure Evolution in Deforming Granular Material: A General Formulation and the Infinitely Stiff Approximation, J. Geophys. Res., 115(B9), B09216.

  • Goren, L., E. Aharonov, D. Sparks, and R. Toussaint (2011), The Mechanical Coupling of Fluid-Filled Granular Material Under Shear, Pure and Applied Geophysics, 168(12), 2289–2323.

  • Hubbert, M. K., and D. G. Willis (1957), Mechanics of Hydraulic Fracturing, Petroleum Transactions, AIME, 210, 153–168.

  • Hubbert, M. K., and W. W. Rubey (1959), Role Of Fluid Pressure In Mechanics Of Overthrust Faulting: I. Mechanics of Fluid-Filled Porous Solids And Its Application To Overthrust Faulting, Geological Society of America Bulletin, 70(2), 115–166.

  • Jackson, R. (2000), The Dynamics of Fluidized Particles, Cambridge University Press.

  • Johnsen, R., Toussaint, K. J. Måløy, and E. G. Flekkøy (2006), Pattern Formation during Air Injection into Granular Materials Confined in a Circular Hele-Shaw Cell, Physical Review E, 74(1), 011301.

  • Johnsen, R. Toussaint, K. J. Måløy, E. G. Flekkøy, and J. Schmittbuhl (2007), Coupled Air/Granular Flow in a Linear Hele-Shaw Cell, Physical Review E, 77(1), 011301.

  • Johnsen, C. Chevalier, A. Lindner, R. Toussaint, E. Clement, K. J. Maloy, E. G. Flekkoy, and J. Schmittbuhl (2008), Decompaction and Fluidization of a Saturated and Confined Granular Medium by Injection of a Viscous Liquid or Gas, Phys Rev E Stat Nonlin Soft Matter Phys, 78(5 Pt 1), 6.

  • Koehn, D., J. Arnold, and C. W. Passchier (2005), Fracture and Vein Patterns as Indicators of Deformation History: A Numerical Study, Geological Society, London, Special Publications, 243(1), 11–24.

  • Ling, H., D. Yue, V. Kaliakin, and N. Themelis (2002), Anisotropic Elastoplastic Bounding Surface Model for Cohesive Soils, Journal of Engineering Mechanics, 128(7), 748–758.

    Google Scholar 

  • Malthe-Sørenssen, A., T. Walmann, B. Jamtveit, J. Feder, and T. Jøssang (1998a), Modeling and Characterization of Fracture Patterns in the Vatnajökull Glacier, Geology, 26(10), 931–934.

  • Malthe-Sørenssen, A., T. Walmann, J. Feder, T. Jøssang, P. Meakin, and H. H. Hardy (1998b), Simulation of Extensional Clay Fractures, Physical Review E, 58(5), 5548–5564.

  • McNamara, S., E. G. Flekkøy, and K. J. Måløy (2000), Grains and Gas Flow: Molecular Dynamics with Hydrodynamic Interactions, Physical Review E, 61(4), 4054–4059.

  • Meyer, B. R. (1986), Design Formulae for 2-D and 3-D Vertical Hydraulic Fractures: Model Comparison and Parametric Studies, in SPE Unconventional Gas Technology Symposium, edited, 1986 Copyright 1986 Society of Petroleum Engineers, Inc., Louisville, Kentucky.

  • Mourgues, R., and P. R. Cobbold (2003), Some Tectonic Consequences of Fluid Overpressures and Seepage Forces as Demonstrated by Sandbox Modelling, Tectonophysics, 376(1–2), 75-97.

  • Niebling, M. J., E. G. Flekkoy, K. J. Maloy, and R. Toussaint (2010a), Mixing of a Granular Layer Falling Through a Fluid, Phys Rev E Stat Nonlin Soft Matter Phys, 82(1 Pt 1), 7.

  • Niebling, M. J., E. G. Flekkøy, K. J. Måløy, and R. Toussaint (2010b), Sedimentation Instabilities: Impact of the Fluid Compressibility and Viscosity, Physical Review E, 82(5), 051302.

  • Niebling, M. J., R. Toussaint, E. G. Flekkøy, and K. J. Måløy (2012a), Dynamic Aerofracture of Dense Granular Packings, Physical Review E (accepted).

  • Niebling, M. J., R. Toussaint, E. G. Flekkøy, and K. J. Måløy (2012b), Estudios Numéricos de Aerofractures en Medios Poros/Numerical Studies of Aerofractures in Porous Media, Revista Cubana de Fysica, 29(1E), 66.

  • Olson, J. E., S. E. Laubach, and R. H. Lander (2009), Natural Fracture Characterization in Tight Gas Sandstones: Integrating Mechanics and Diagenesis, AAPG Bulletin, 93(11), 1535–1549.

  • Press, W. H. (1992), Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press.

  • Rozhko, A. Y. (2010), Role of Seepage Forces on Seismicity Triggering, J Geophys Res-Sol Ea, 115.

  • Rozhko, A. Y., Y. Y. Podladchikov, and F. Renard (2007), Failure Patterns Caused by Localized Rise in Pore-Fluid Overpressure and Effective Strength of Rocks, Geophys. Res. Lett., 34(22), L22304.

  • Sachau, T., and D. Koehn (2012), ‘Melange’ : A Viscoelastic Lattice-Particle Model Applicable to the Lithosphere, Geochem. Geophys. Geosyst., 13(12), Q12009.

  • Secor, D. T. (1965), Role of Fluid Pressure in Jointing, Am J Sci, 263(8), 633–646.

    Google Scholar 

  • Sheldon, H. A., A. C. Barnicoat, and A. Ord (2006), Numerical Modelling of Faulting and Fluid Flow in Porous Rocks: An Approach Based on Critical State Soil Mechanics, J Struct Geol, 28(8), 1468–1482.

  • Spickermann , A., R. Toussaint, J. Travelletti, J. P. Malet, and T. W. J. Van Asch (2012), A Grain-Fluid Mixture Model to Characterize the Dynamics of Active Lanslides in Fine-Grained Soils, J Geophys Res-Sol Ea.

  • Steefel, C. I., and A. C. Lasaga (1994), A Coupled Model for Transport of Multiple Chemical Species and Kinetic Precipitation/Dissolution Reactions with Application to Reactive Flow in Single Phase Hydrothermal Systems, Am J Sci, 294(5), 529–592.

  • Tzschichholz, F., H. J. Herrmann, H. E. Roman, and M. Pfuff (1994), Beam Model for Hydraulic Fracturing, Physical Review B, 49(10), 7056–7059.

  • Valkó, P., and M. J. Economides (1995), Hydraulic Fracture Mechanics, Wiley, New York.

  • Vinningland, J. L., Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy (2007a), Experiments and Simulations of a Gravitational Granular Flow Instability, Physical Review E, 76(5), 051306.

  • Vinningland, J. L., Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy (2007b), Granular Rayleigh-Taylor Instability: Experiments and Simulations, Physical Review Letters, 99(4), 048001.

  • Vinningland, J. L., Ø. Johnsen, E. G. Flekkoy, R. Toussaint, and K. J. Maloy (2009a), Granular Rayleigh-Taylor Instability, paper presented at 6th international conference on micromechanics of granular media, powder and grains, AIP.

  • Vinningland, J. L., Ø. Johnsen, E. G. Flekkoy, R. Toussaint, and K. J. Maloy (2009b), Granular Rayleigh Taylor Instability, paper presented at Traffic and Granular Flow conference 2007, Orsay, 2009.

  • Vinningland, J. L., Ø. Johnsen, E. G. Flekkøy, R. Toussaint, and K. J. Måløy (2010), Size Invariance of the Granular Rayleigh-Taylor Instability, Physical Review E, 81(4), 041308.

  • Vinningland, J. L., R. Toussaint, M. Niebling, E. Flekkøy, and K. Måløy (2012), Family-Vicsek Scaling of Detachment Fronts in Granular Rayleigh-Taylor Instabilities during Sedimentating Granular/Fluid Flows, The European Physical Journal - Special Topics, 204(1), 27–40.

  • Walmann, T., A. Malthe-Sørenssen, J. Feder, T. Jøssang, P. Meakin, and H. H. Hardy (1996), Scaling Relations for the Lengths and Widths of Fractures, Physical Review Letters, 77(27), 5393–5396.

  • Wang, T.-Y., and C. C.-P. Chen (2001), Thermal-Adi: A Linear-Time Chip-Level Dynamic Thermal Simulation Algorithm Based on Alternating-Direction-Implicit (ADI) Method, In Proceedings of the 2001 international symposium on Physical design, edited, pp. 238-243, ACM, Sonoma, California, United States.

  • Wangen, M. (2002), Effective Permeability of Hydrofractured Sedimentary Rocks, in Norwegian Petroleum Society Special Publications, edited by G. K. Andreas and H. Robert, pp. 61–74, Elsevier, New York.

  • Wong, T.-F., H. Szeto, and J. Zhang (1992), Effect of Loading Path and Porosity on the Failure Mode of Porous Rocks, Applied Mechanics Reviews, 45(8), 281–293.

  • Wong, T.-F., C. David, and W. Zhu (1997), The Transition from Brittle Faulting to Cataclastic Flow in Porous Sandstones: Mechanical Deformation, J. Geophys. Res., 102(B2), 3009–3025.

  • Yu. N, G. (1993), Growth of a Crack Produced by Hydraulic Fracture in a Poroelastic Medium, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(3), 233–238.

  • Zhu, W., and T.-F. Wong (1997), The Transition from Brittle Faulting to Cataclastic Flow: Permeability Evolution, J. Geophys. Res., 102(B2), 3027–3041.

Download references

Acknowledgments

We are deeply grateful to Till Sachau for his valuable discussions. This study was carried out within the framework of DGMK (German Society for Petroleum and Coal Science and Technology) research project 718 “Mineral Vein Dynamics Modelling”, which is funded by the companies ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG and Wintershall Holding GmbH, within the basic research program of the WEG Wirtschaftsverband Erdöl- und Erdgasgewinnung e.V. We thank the companies for their financial support and their permission to publish these results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ghani.

Appendices

Appendices

1.1 Appendix-A: ADI—2D Pressure Diffusion

The ADI method is time implicit. With symmetric discretization in time i.e., between a forward and backward step, this methods is unconditionally stable and the precision is better than with a purely forward in time implicit method [Press, 1992]. The two-dimensional pressure diffusion Eq. (9) can be rewritten as

$$ \frac{{\partial P(\overrightarrow {r} ,t)}}{\partial t} = \left( {1 + \beta P} \right)\frac{{K(\overrightarrow {r} ,t)}}{{\beta \mu \phi (\overrightarrow {r} ,t)}}\left[ {\frac{{\partial^{2} P(\overrightarrow {r} ,t)}}{{\partial x^{2} }} + \frac{{\partial^{2} P(\overrightarrow {r} ,t)}}{{\partial y^{2} }}} \right] - \frac{1}{{\beta \phi (\overrightarrow {r} ,t)}}g(\overrightarrow {r} ,t) $$
(A1)

where \( g(\overrightarrow {r} ,t) \) is the source term and \( \overrightarrow {r} \) stands for position in space. This is a second-order parabolic partial differential equation. Corresponding to the time and space discretization of the 2D pressure continuum using forward difference with time on the left hand side and central difference with space on the right hand side of equation (A1).

$$ \frac{{P_{i,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} - P_{i,j}^{n} }}{\Updelta t} = (1 + \beta P)\frac{{k_{i,j} }}{{\beta \mu \phi_{i,j} }}\left[ {\frac{{P_{i + 1,j} - 2P_{i,j} + P_{i - 1,j} }}{{(\Updelta x)^{2} }} + \frac{{P_{i,j + 1} - 2P_{i,j} + P_{i,j - 1} }}{{(\Updelta y)^{2} }}} \right] - \frac{1}{\phi \beta }g_{i,j} $$
(A2)

where suffixes \( i,\,j \) and \( n \) are the indices in the x, y, and t directions respectively.

The main idea of the ADI method is to reduce the 2-D problem into a succession of two one-dimensional problems by proceeding one time step from \( n \) to \( n + 1 \) in two sub-time steps (Fig. 11). The first half-step (\( n \) to \( n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} \)) is taken implicitly in the x-direction and explicitly in the y-direction followed by the second half-step (\( n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} \) to \( n + 1 \)) that is taken implicitly in the y-direction and explicitly in the x-direction.

Fig. 11
figure 11

Schematic diagram of ADI solution of finite-difference pressure continuum, after Wang and Chen (2001)

Detailed differential equations in stage-1 for each \( j \) at marched time \( n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}} \) and the corresponding tridiagonal system of equations for the respective one-dimensional problem can be derived in form of matrix equation of dimension I:

$$ - \alpha_{i,j} P_{i + 1,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} + (1 + 2\alpha_{i,j} )P_{i,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} - \alpha_{i,j} P_{i - 1,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} = \gamma_{i,j} P_{i,j + 1}^{n} + (1 - 2\gamma_{i,j} )P_{i,j}^{n} + \gamma_{i,j} P_{i,j - 1}^{n} - \frac{\Updelta t}{2\phi \beta }g_{i,j} $$
(A3)
$$ \begin{gathered} \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & \ldots & \ldots & 0 \\ { - \alpha_{i,j} } & {1 + 2\alpha_{i,j} } & { - \alpha_{i,j} } & 0 & \ldots & \ldots \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ \ldots & \ldots & 0 & { - \alpha_{i,j} } & {1 + 2\alpha_{i,j} } & { - \alpha_{i,j} } \\ 0 & \ldots & \ldots & 0 & 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {P_{0,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ {P_{1,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ \ldots \\ \ldots \\ {P_{I,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ \end{array} } \right] = \hfill \\ \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & \ldots & \ldots & 0 \\ {\gamma_{i,j} } & {1 - 2\gamma_{i,j} } & {\gamma_{i,j} } & 0 & \ldots & \ldots \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ \ldots & \ldots & 0 & {\gamma_{i,j} } & {1 - 2\gamma_{1,j} } & {\gamma_{i,j} } \\ 0 & \ldots & \ldots & 0 & 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {P_{i,0}^{n} } \\ {P_{i,1}^{n} } \\ \ldots \\ \ldots \\ {P_{i,J}^{n} } \\ \end{array} } \right] - \frac{\Updelta t}{2\phi \beta }g_{i,j} \hfill \\ \end{gathered} $$
(A4)
$$ i = 0,1, \ldots ,I; \, \quad j = 0,1, \ldots ,J $$

where

$$ \alpha_{i,j} = (1 + \beta P)\frac{{K_{i,j} \Updelta t}}{{2\mu \beta \phi_{i,j} (\Updelta x)^{2} }}\;\;\;\;{\text{and }}\gamma_{i,j} = (1 + \beta P)\frac{{K_{i,j} \Updelta t}}{{2\mu \beta \phi_{i,j} (\Updelta y)^{2} }} $$

By analogy, stage-II of the ADI method for each \( i \) at time \( n + 1 \), is expressed in tridiagonal system of dimension J:

$$ - \gamma_{i,j} P_{i,j + 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} + (1 + 2\gamma_{i,j} )P_{i,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} - \gamma_{i,j} P_{i,j - 1}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} = \alpha_{i,j} P_{i + 1,j}^{n} + (1 - 2\alpha_{i,j} )P_{i,j}^{n} + \alpha_{i,j} P_{i - 1,j}^{n} - \frac{\Updelta t}{2\phi \beta }g_{i,j} $$
(A5)
$$ \begin{gathered} \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & \ldots & \ldots & 0 \\ { - \gamma_{i,j} } & {1 + 2\gamma_{i,j} } & { - \gamma_{i,j} } & 0 & \ldots & \ldots \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ \ldots & \ldots & 0 & { - \gamma_{i,j} } & {1 + 2\gamma_{i,j} } & { - \gamma_{i,j} } \\ 0 & \ldots & \ldots & 0 & 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {P_{i,0}^{n + 1} } \\ {P_{i,1}^{n + 1} } \\ \ldots \\ \ldots \\ {P_{i,J}^{n + 1} } \\ \end{array} } \right] = \hfill \\ \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & \ldots & \ldots & 0 \\ {\alpha_{i,j} } & {1 - 2\alpha_{i,j} } & {\alpha_{i,j} } & 0 & \ldots & \ldots \\ 0 & \ldots & \ldots & \ldots & \ldots & 0 \\ \ldots & \ldots & 0 & {\alpha_{i,j} } & {1 - 2\alpha_{i,j} } & {\alpha_{i,j} } \\ 0 & \ldots & \ldots & 0 & 0 & 1 \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {P_{0,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ {P_{1,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ \ldots \\ \ldots \\ {P_{I,j}^{{n + {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}} } \\ \end{array} } \right] - \frac{\Updelta t}{2\phi \beta }g_{i,j} \hfill \\ \end{gathered} $$
(A6)
$$ i = 0,1, \ldots ,I; \, j = 0,1, \ldots ,J $$

Implementing the Gauss-algorithm with a Dirichlet boundary condition, the derived tridiagonal system of Eq. (A4) is solved \( J \) times and Eq. (A6) by \( I \) times.

Appendix B

See Figs. 11 and 12

Fig. 12
figure 12

Different patterns of hydrofractures in a situation where a constant point source is injected in a homogeneous media under different remote stresses: a with relatively smaller \( \sigma_{y} \), the results show the initial development of circular fracturing at the source location (centre) with elongated fractures oriented parallel to the axis of the applied stress. In contrast to the pattern shown in a, in b a larger \( \sigma_{y} \) dominates the overall pattern and results only in sub-vertical oriented fractures parallel to the main stress axis and through the source location (central). c The figure shows the state of stress field at the onset of fracturing, where the red color code represents high differential stress and blue low differential stress

Appendix C

See Fig. 13

Fig. 13
figure 13

This figure shows a time series illustrating the influence of the local pore overpressure on brittle failure in a pure shear stress regime. In this case the extension fractures develop at the source location (centre) and link up with shear fractures towards the edges of the simulation box (time steps T increase from left to right)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghani, I., Koehn, D., Toussaint, R. et al. Dynamic Development of Hydrofracture. Pure Appl. Geophys. 170, 1685–1703 (2013). https://doi.org/10.1007/s00024-012-0637-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0637-7

Keywords

Navigation