Skip to main content
Log in

General Toeplitz Matrices Subject to Gaussian Perturbations

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study the spectra of general \(N\times N\) Toeplitz matrices given by symbols in the Wiener Algebra perturbed by small complex Gaussian random matrices, in the regime \(N\gg 1\). We prove an asymptotic formula for the number of eigenvalues of the perturbed matrix in smooth domains. We show that these eigenvalues follow a Weyl law with probability sub-exponentially close to 1, as \(N\gg 1\), in particular that most eigenvalues of the perturbed Toeplitz matrix are close to the curve in the complex plane given by the symbol of the unperturbed Toeplitz matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Here \({{\mathcal {N}}}(A)\) and \({{\mathcal {R}}}(A)\) denote the null space and the range of a linear operator A.

References

  1. Bordenave, C., Chafaï, D.: Lecture notes on the circular law. In: Vu, V.H. (ed.) Modern Aspects of Random Matrix Theory, vol. 72, pp. 1–34. American Mathematical Society, London (2013)

    Google Scholar 

  2. Basak, A., Paquette, E., Zeitouni, O.: Regularization of non-normal matrices by gaussian noise-the banded toeplitz and twisted toeplitz cases. Forum Math. Sigma 7, e3 (2019)

    Article  MathSciNet  Google Scholar 

  3. Basak, A., Paquette, E., Zeitouni, O.: Spectrum of random perturbations of toeplitz matrices with finite symbols. Trans. Am. Math. Soc. 373(7), 4999–5023 (2020)

    Article  MathSciNet  Google Scholar 

  4. Böttcher, A., Silbermann, B.: Introduction to Large Truncated Toeplitz Matrices. Springer, Berlin (1999)

    Book  Google Scholar 

  5. Davies, E.B.: Non-self-adjoint operators and pseudospectra, volume 76 of Proceedings of Symposia in Pure Mathematics, AMS (2007)

  6. Davies, E.B., Hager, M.: Perturbations of Jordan matrices. J. Approx. Theory 156(1), 82–94 (2009)

    Article  MathSciNet  Google Scholar 

  7. Dimassi, M., Sjöstrand, J.: Spectral Asymptotics in the Semi-Classical Limit. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  8. Embree, M., Trefethen, L.N.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  9. Guionnet, A., Matchett Wood, P., Zeitouni, O.: Convergence of the spectral measure of non-normal matrices. Proc. AMS 142(2), 667–679 (2014)

    Article  MathSciNet  Google Scholar 

  10. Hager, M., Sjöstrand, J.: Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Annal. 342, 177–243 (2008)

    Article  MathSciNet  Google Scholar 

  11. Kallenberg, O.: Foundations of Modern Probability. Probability and its Applications. Springer, Berlin (1997)

    MATH  Google Scholar 

  12. Sjöstrand, J.: Counting zeros of holomorphic functions of exponential growth. J. Pseudodiffer. Oper. Appl. 1(1), 75–100 (2010)

    Article  MathSciNet  Google Scholar 

  13. Sjöstrand, J.: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations Pseudo-Differential Operators Theory and Applications, vol. 14. Birkhäuser, Basel (2019)

    Book  Google Scholar 

  14. Sjöstrand, J., Vogel, M.: Large bi-diagonal matrices and random perturbations. J. Spectral Theory 6(4), 977–1020 (2016)

    Article  MathSciNet  Google Scholar 

  15. Sjöstrand, J., Vogel, M.: Toeplitz band matrices with small random perturbations. Indagationes Mathematicae (2020). https://doi.org/10.1016/j.indag.2020.09.001

    Article  Google Scholar 

  16. Sjöstrand, J., Zworski, M.: Elementary linear algebra for advanced spectral problems. Ann. l’Inst. Fourier 57, 2095–2141 (2007)

    Article  MathSciNet  Google Scholar 

  17. Tao, T.: Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol. 132. American Mathematical Society, London (2012)

    Book  Google Scholar 

  18. Tao, T., Vu, V., Krishnapur, M.: Random matrices: universality of esds and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)

    Article  MathSciNet  Google Scholar 

  19. Vogel, M.: The precise shape of the eigenvalue intensity for a class of Non-Self-Adjoint operators under random perturbations. Ann. Henri Poincaré 18, 435–517 (2017)

  20. Wood, P.M.: Universality of the esd for a fixed matrix plus small random noise: a stability approach. Ann. l’Inst. Henri Poinc. Probab. Stat. 52(4), 1877–1896 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges support from the 2018 S. Bergman award. The second author was supported by a CNRS Momentum fellowship. We are grateful to Ofer Zeitouni for his interest and a remark which lead to a better presentation of this paper. We are grateful to the referee for pointing out a mistake affecting the range of the exponent \(\delta _1\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vogel.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sjöstrand, J., Vogel, M. General Toeplitz Matrices Subject to Gaussian Perturbations. Ann. Henri Poincaré 22, 49–81 (2021). https://doi.org/10.1007/s00023-020-00970-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00970-w

Navigation