Skip to main content
Log in

Stability and Approximation of Statistical Limit Laws for Multidimensional Piecewise Expanding Maps

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The unpredictability of chaotic nonlinear dynamics leads naturally to statistical descriptions, including probabilistic limit laws such as the central limit theorem and large deviation principle. A key tool in the Nagaev–Guivarc’h spectral method for establishing statistical limit theorems is a “twisted” transfer operator. In the abstract setting of Keller and Liverani (Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 28:141–152, 1999), we prove that derivatives of all orders of the leading eigenvalues and eigenprojections of the twisted transfer operators with respect to the twist parameter are stable when subjected to a broad class of perturbations. As a result, we demonstrate stability of the variance in the central limit theorem and the rate function from a large deviation principle with respect to deterministic and stochastic perturbations of the dynamics and perturbations induced by numerical schemes. We apply these results to piecewise expanding maps in one and multiple dimensions, including new convergence results for Ulam projections on quasi-Hölder spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. When we say a map is analytic on an arbitrary compact subset V of \(\mathbb {C}\), we mean that it may be extended to an analytic map on some larger open subset of \(\mathbb {C}\).

  2. While the formula in [26, I-(5.10)] is only given for the finite-dimensional case, it also holds in the current setting by the same arguments.

  3. We note that the sign discrepancy between [26, II-(2.14)] and (20) is due to an additional factor of \(-1\) in the definition of the resolvent in [26].

  4. Strictly speaking, Ulam’s method for twisted transfer operators will involve integrals of g, which can be numerically evaluated. We have chosen the above midpoint approximation of g for computational convenience; note that the midpoint rule is the same order of accuracy as the trapezoidal method of numerical quadrature and often slightly more accurate (errors are about a factor 1/2 smaller). We additionally computed the values in Table 1 with an “exact” implementation of Ulam and the errors due to the midpoint estimate of g were several orders of magnitude smaller than the errors due to the overall Ulam discretisation.

  5. On a 7th-generation intel core i5 processor.

References

  1. Aimino, R., Vaienti, S.: A note on the large deviations for piecewise expanding multidimensional maps. In: González-Aguilar, H., Ugalde, E. (eds.) Nonlinear dynamics new directions. Nonlinear systems and complexity, vol. 11, pp. 1–10. Springer (2015)

  2. Ayyer, A., Liverani, C., Stenlund, M.: Quenched CLT for random toral automorphism. Discrete Contin. Dyn. Syst. 24, 331–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahsoun, W.: Rigorous numerical approximation of escape rates. Nonlinearity 19, 2529 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bahsoun, W., Galatolo, S., Nisoli, I., Niu, X.: Rigorous approximation of diffusion coefficients for expanding maps. J. Stat. Phys. 163, 1486–1503 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bahsoun, W., Melbourne, I., Ruziboev, M.: Variance continuity for Lorenz flows. arXiv preprint arXiv:1812.08998, (2018)

  6. Baladi, V.: Positive Transfer Operators and Decay of Correlations, vol. 16. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  7. Böröczky, K.: Finite Packing and Covering, Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Bose, C., Froyland, G., González-Tokman, C., Murray, R.: Ulam’s method for Lasota–Yorke maps with holes. SIAM J. Appl. Dyn. Syst. 13, 1010–1032 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyarsky, A., Gora, P.: Laws of Chaos: Invariant Measures and Dynamical Systems in One Dimension. Probability and its Applications. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  10. Broise, A.: Transformations dilatantes de l’intervalle et théorèmes limites, Astérisque, (1996), pp. 1–109. Études spectrales d’opérateurs de transfert et applications

  11. Dellnitz, M., Froyland, G., Sertl, S.: On the isolated spectrum of the Perron–Frobenius operator. Nonlinearity 13, 1171–1188 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491–515 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, J., Zhou, A.: Finite approximations of Frobenius–Perron operators. A solution of Ulam’s conjecture to multi-dimensional transformations. Physica D 92, 61–68 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Góra, P.: On small stochastic perturbations of mappings of the unit interval. Colloquium Mathematicae 49, 73–85 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gouëzel, S.: Berry-Esseen theorem and local limit theorem for non-uniformly expanding maps. Annales de l’Institut Henri Poincare (B) Probability and Statistics 41, 997–1024 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Gouëzel, S.: Almost sure invariance principle for dynamical systems by spectral methods. Ann. Prob. 38, 1639–1671 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. In: Volume 89 of Proceedings of Symposia in Pure Mathematics. American Mathematical Society (2015), pp. 161–193

  18. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dyn. Syst. 26, 189–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gruber, P.: Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2010)

    Google Scholar 

  20. Guivarc’h, Y., Hardy, J.: Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov. Annales de l’IHP Probabilités et statistiques 24, 73–98 (1988)

    MATH  Google Scholar 

  21. Hennion, H.: Sur un théoreme spectral et son application aux noyaux lipchitziens. Proc. Am. Math. Soc. 118, 627–634 (1993)

    MATH  Google Scholar 

  22. Hennion, H., Hervé, L.: Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics, vol. 1766. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Hofbauer, F., Keller, G.: Ergodic properties of invariant measures for piecewise monotonic transformations. Mathematische Zeitschrift 180, 119–140 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jenkinson, O., Pollicott, M., Vytnova, P.: Rigorous computation of diffusion coefficients for expanding maps. J. Stat. Phys. 170, 221–253 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Johnson, P.L., Meneveau, C.: Large-deviation joint statistics of the finite-time Lyapunov spectrum in isotropic turbulence. Phys. Fluids 27, 085110 (2015)

    Article  ADS  Google Scholar 

  26. Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften. Springer, Berlin Heidelberg (1966)

    Book  Google Scholar 

  27. Keller, G.: Stochastic stability in some chaotic dynamical systems. Monatshefte für Mathematik 94, 313–333 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Prob. Theory Relat. Fields 69, 461–478 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Keller, G., Howard, P.J., Klages, R.: Continuity properties of transport coefficients in simple maps. Nonlinearity 21, 1719–1743 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Keller, G., Liverani, C.: Stability of the spectrum for transfer operators. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 28, 141–152 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Li, T.-Y.: Finite approximation for the Frobenius–Perron operator. a solution to Ulam’s conjecture. J. Approx. Theory 17, 177–186 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liverani, C.: Decay of correlations for piecewise expanding maps. J. Stat. Phys. 78, 1111–1129 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Melbourne, I., Nicol, M.: A vector-valued almost sure invariance principle for hyperbolic dynamical systems. Ann. Prob. 37, 478–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Murray, R.: Existence, mixing and approximation of invariant densities for expanding maps on \(\mathbb{R}^r\). Nonlinear Anal. Theory Methods Appl. 45, 37–72 (2001)

    Article  MATH  Google Scholar 

  35. Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theory Prob. Appl. 2, 378–406 (1957)

    Article  MathSciNet  Google Scholar 

  36. Rey-Bellet, L., Young, L.-S.: Large deviations in non-uniformly hyperbolic dynamical systems. Ergodic Theory Dyn. Syst. 28, 587–612 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rohwer, C.M., Angeletti, F., Touchette, H.: Convergence of large-deviation estimators. Phys. Rev. E 92, 052104 (2015)

    Article  ADS  Google Scholar 

  38. Rousseau-Egele, J.: Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Prob. 11, 772–788 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  39. Saussol, B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  41. Tulcea, C.T.I., Marinescu, G.: Theorie ergodique pour des classes d’operations non completement continues. Ann. Math. 52, 140–147 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, Geneva (1960)

    MATH  Google Scholar 

  43. Wormell, C.: Spectral Galerkin methods for transfer operators in uniformly expanding dynamics. Numerische Mathematik 142, 421–463 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

HC is supported by an Australian Government Research Training Program Scholarship and the UNSW School of Mathematics and Statistics. GF is partially supported by an Australian Research Council Discovery Project. Both authors thank Davor Dragičević for helpful conversations during the writing of this work, and to an anonymous referee for their suggested strengthening of continuity to Hölder continuity in Theorems 2.6, 3.4 and 3.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Crimmins.

Additional information

Communicated by Claude-Alain Pillet.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The Proofs of Lemmas 5.12 and 5.13

Before discussing our strategy for proving Lemmas 5.12 and 5.13, we must discuss the relationship between the space \(\mathbb {V}_{\beta }(\Omega )\) and the seminorm \(\left|\cdot \right|_\beta \). It is noted in [28] that while \(\mathbb {V}_{\beta }(\Omega )\) is independent of \(\eta _0\), the seminorm \(\left|\cdot \right|_\beta \) is not. However, changing \(\eta _0\) preserves the topology induced by the relevant seminorm, which will be critical to proofs in this appendix. The following lemma gives the relevant bounds.

Lemma A.1

For \(\zeta > 0\) and \(f \in L^1(\mathbb {R}^d)\) let

$$\begin{aligned} \left|f\right|_{\beta ,\zeta } = \sup _{0 < \eta \le \zeta } \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \;\mathrm{d}x. \end{aligned}$$

If \(0 < t \le s\), then

$$\begin{aligned} \left|\cdot \right|_{\beta ,t} \le \left|\cdot \right|_{\beta ,s} \le S(t,s) \left|\cdot \right|_{\beta ,t}, \end{aligned}$$

where S(ts) denotes the minimal number of balls of radius t required to cover (up to a set of measure 0) a ball of radius s.

Proof

The inequality \(\left|\cdot \right|_{\beta ,t} \le \left|\cdot \right|_{\beta ,s}\) is trivial. Let \(f \in L^1(\mathbb {R}^d)\). If

$$\begin{aligned} \sup _{0< \eta \le t} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \,\mathrm{d}x = \sup _{0 < \eta \le s} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \;\mathrm{d}x, \end{aligned}$$
(41)

then, as \(S(t,s) \ge 1\), we clearly have \(\left|f\right|_{\beta ,s} \le S(t,s) \left|f\right|_{\beta ,t}\). Alternatively, if (41) does not hold, then

$$\begin{aligned} \sup _{0< \eta \le t} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \,\mathrm{d}x< \sup _{t < \eta \le s} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \;\mathrm{d}x. \end{aligned}$$

By the definition of S(ts), there exists \(\{c_i\}_{i=1}^{S(t,s)} \subseteq \mathbb {R}^d\) and a set N of measure 0 such that

$$\begin{aligned} B_s(x) {\setminus } (N + x) \subseteq \bigcup _{i=1}^{S(t,s)} B_t(x+c_i) \end{aligned}$$

for every \(x \in \mathbb {R}^d\). Hence, for any \(\eta \in (t, s]\) and \(x \in \mathbb {R}^d\) we have

$$\begin{aligned} {\text {osc}} \left( f, B_\eta (x)\right) \le {\text {osc}} \left( f, B_s(x)\right) \le \sum _{i=1}^{S(t,s)} {\text {osc}} \left( f,B_t(x+c_i)\right) . \end{aligned}$$

After integrating, taking the supremum and applying the definition of \(\left|\cdot \right|^t_\beta \), we obtain

$$\begin{aligned} \begin{aligned}&\sup _{t < \eta \le s} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_\eta (x)\right) \,\mathrm{d}x \le S(t,s) t^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_t(x)\right) \;\mathrm{d}x \\&\quad \le S(t,s) \left|f\right|_{\beta ,t}, \end{aligned} \end{aligned}$$

completing the proof. \(\square \)

We obtain Lemmas 5.12 and 5.13 as corollaries to the following result.

Proposition A.2

If \(Q \in \mathcal {P}(\kappa )\) satisfies \({{\,\mathrm{diam}\,}}(Q) < \eta _0\), then

$$\begin{aligned} \left|\mathbb {E}_Q\right|_\beta \le S(\eta _0 - {{\,\mathrm{diam}\,}}(Q), \eta _0)\left( 1 + \frac{\kappa }{\root d \of {\frac{3}{2}} - 1} \right) ^\beta . \end{aligned}$$
(42)

We prove Proposition A.2 by using Lemma A.1 to extend a bound for \(\sup _{\left|f\right|_\beta = 1} \left|\mathbb {E}_Q f\right|_{\beta ,\eta _0 - {{\,\mathrm{diam}\,}}(Q)}\) to a bound for \(\left|\mathbb {E}_Q\right|_\beta \). We do this by combining two bounds for

$$\begin{aligned} \eta ^{-\beta } \int {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}m \end{aligned}$$

for \(\eta \in (0, \eta _0 - {{\,\mathrm{diam}\,}}(Q)]\):

  1. 1.

    We obtain the “big” \(\eta \) bound by scaling the \(\eta \) balls in \({\text {osc}} \) up to \(\eta +{{\,\mathrm{diam}\,}}(Q)\) balls. This bound is useful for large \(\eta \), but grows unboundedly as \(\eta \) vanishes. We obtain this bound in Lemma A.4.

  2. 2.

    We obtain the “small” \(\eta \) bound by using the geometry of the elements of Q to quantify the decay of the measure of the support of \({\text {osc}} \left( \mathbb {E}_Q f, B_\eta (\cdot )\right) \) as \(\eta \) vanishes. This bound is used for \(\eta \) arbitrarily close to 0. Obtaining this bound is more complicated and is developed in Lemmas A.5A.7.

Before proving either of these bounds, we derive an explicit expression for \(\int {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}m\).

Lemma A.3

Let \(Q \in \mathcal {P}(\kappa )\) define \(Q' = Q \cup \{ \Omega ^c\}\), and for each \(\eta > 0\) and \(x \in \mathbb {R}^d\) let

$$\begin{aligned} N(x,\eta ) = \{ J \in Q' : B_\eta (x) \cap J \ne \emptyset \}. \end{aligned}$$

For each \(\eta > 0\), \(f \in \mathbb {V}_{\beta }(\Omega )\) and \(S \subseteq Q' \) let

$$\begin{aligned} M_S(f) = \max _{J,K \in S} \left|\hat{f}_{J} - \hat{f}_{K}\right| \quad \text {and} \quad A_{S,\eta } = \{ x \in \mathbb {R}^d : N(x, \eta ) = S \}. \end{aligned}$$

Then each \(A_{S,\eta }\) is measurable, and for every \(x \in \mathbb {R}^d\)

$$\begin{aligned} {\text {osc}} \left( \mathbb {E}_Q f,B_\eta (x)\right) = M_{N(x,\eta )}(f). \end{aligned}$$
(43)

Hence,

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x = \sum _{S \subseteq Q' } m(A_{S,\eta }) M_{S}(f). \end{aligned}$$
(44)

Proof

For every \(J \in Q\), the equality

$$\begin{aligned} \{x \in \mathbb {R}^d : B_\eta (x) \cap J \ne \emptyset \} = \bigcup _{y \in J} B_\eta (y), \end{aligned}$$

implies that both sets are open and therefore measurable. Recalling from Definition 5.7 that Q is finite and noting the equality

$$\begin{aligned}\begin{aligned} A_{S,\eta } =&\left( \bigcap _{J \in S} \{x \in \mathbb {R}^d : B_\eta (x) \cap J \ne \emptyset \} \right) \\&\bigcap \left( \bigcap _{K \in Q' {\setminus } S} \{x \in \mathbb {R}^d : B_\eta (x) \cap K = \emptyset \} \right) , \end{aligned} \end{aligned}$$

we conclude that each \(A_{S,\eta }\) is measurable. Considering the definition of \(N(x,\eta )\), we note that the family of sets \(\{ A_{S, \eta } : S \subseteq Q'\}\) partitions \(\mathbb {R}^d\). Hence,

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x = \sum _{S \subseteq Q' } \int _{A_{S,\eta }} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x, \end{aligned}$$

where we note that the sum on the right-hand side is well defined as only finitely many terms are ever nonzero. Thus, in order to prove (44) it suffices to prove (43). If \(N(x,\eta ) = S\), then

$$\begin{aligned} (\mathbb {E}_Q f)(B_\eta (x)) = \left\{ \hat{f}_{J} : J \cap B_\eta (x) \ne \emptyset \right\} = \left\{ \hat{f}_{J} : J \in S \right\} , \end{aligned}$$

which is finite as \(Q'\) is finite. By applying the definition of \({\text {osc}} \), we find that

$$\begin{aligned} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) = \max _{J,K \in S} \left|\hat{f}_{J} - \hat{f}_{K}\right| = M_S(f), \end{aligned}$$

which is exactly (44). \(\square \)

We may now obtain the “big” \(\eta \) bound.

Lemma A.4

If \(Q \in \mathcal {P}(\kappa )\) then for each \(f \in \mathbb {V}_{\beta }(\Omega )\) and \(\eta > 0\), we have

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x \le \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_{\eta +{{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x. \end{aligned}$$
(45)

Furthermore, if \({{\,\mathrm{diam}\,}}(Q) < \eta _0\) and \(\eta \in (0, \eta _0 - {{\,\mathrm{diam}\,}}(Q)]\) then

$$\begin{aligned} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x \le \left( 1 +\frac{{{\,\mathrm{diam}\,}}(Q)}{\eta }\right) ^\beta \left|f\right|_\beta . \end{aligned}$$
(46)

Proof

Fix \(x \in \mathbb {R}^d\). By Lemma A.3, we have

$$\begin{aligned} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) = \max _{J,K \in N(x, \eta )} \left|\hat{f}_{J} -\hat{f}_{K}\right|. \end{aligned}$$

Suppose that \(y \in I\) for some \(I \in N(x, \eta ) {\setminus } \{\Omega ^c\}\). By the definition of \(N(x, \eta )\) there exists \(z \in I\) such that \(\left|z - x\right| < \eta \). Since \(\left|z-y\right| \le {{\,\mathrm{diam}\,}}(Q)\) we have \(\left|y-x\right| < \eta + {{\,\mathrm{diam}\,}}(Q)\). Hence,

$$\begin{aligned} \bigcup _{I \in N(x,\eta ) {\setminus } \{\Omega ^c\}} I \subseteq B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x). \end{aligned}$$
(47)

Now suppose that \(J,K \in N(x,\eta )\). In the case where \(J,K \in N(x,\eta ){\setminus } \{\Omega ^c\}\) the inclusion (47) implies that for almost every \((y_1, y_2) \in J \times K\) we have

$$\begin{aligned} \left|f(y_1) - f(y_2)\right| \le {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) . \end{aligned}$$

By taking expectations with respect to \(y_1\) over J and \(y_2\) over K, we obtain

$$\begin{aligned} \left|\hat{f}_{J} - \hat{f}_{K}\right| \le {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) . \end{aligned}$$
(48)

Alternatively, if either J or K is equal to \(\Omega ^c\) then

$$\begin{aligned} \begin{aligned} \left|\hat{f}_{J} - \hat{f}_{K}\right| = \max \left\{ \left|\hat{f}_{J}\right|, \left|\hat{f}_{K}\right|\right\}&\le \max _{I \in N(x, \eta ) {\setminus } \Omega ^c} \left|\hat{f}_{I}\right| \\&\le \mathop {{{\,\mathrm{ess\,sup}\,}}}\limits _{y \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}} \left|f(y)\right|, \end{aligned} \end{aligned}$$
(49)

where we obtain the last inequality by using (47). Noting that the set \(B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x) \cap \Omega ^c\) has nonzero measure, we have

$$\begin{aligned} \mathop {{{\,\mathrm{ess\,sup}\,}}}\limits _{y \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)} \left|f(y)\right| \le {\text {osc}} \left( f,B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) . \end{aligned}$$
(50)

By combining (49) and (50), we obtain (48) for the case where either J or K is equal to \(\Omega ^c\). As J and K were arbitrary elements of \(N(x,\eta )\), this implies that

$$\begin{aligned} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) = \max _{I,J \in N(x,\eta )} \left|\hat{f}_{I} -\hat{f}_{J}\right| \le {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) . \end{aligned}$$

By integrating with respect to x over \(\mathbb {R}^d\), we obtain (45). To prove (46), suppose that \({{\,\mathrm{diam}\,}}(Q) < \eta _0\). If \(\eta \in (0, \eta _0 -{{\,\mathrm{diam}\,}}(Q)]\) then \(\eta + {{\,\mathrm{diam}\,}}(Q) \in (0, \eta _0]\) and so the definition of \(\left|\cdot \right|_\beta \) implies that

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_{\eta +{{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x \le (\eta + {{\,\mathrm{diam}\,}}(Q))^{\beta } \left|f\right|_\beta . \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_{\eta }(x)\right) \;\mathrm{d}x&\le \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_{\eta +{{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x \\&\le \left( 1 +\frac{{{\,\mathrm{diam}\,}}(Q)}{\eta }\right) ^\beta \left|f\right|_\beta . \end{aligned} \end{aligned}$$

\(\square \)

We will now pursue the “small” \(\eta \) bound.

Lemma A.5

Let \(Q \in \mathcal {P}(\kappa )\) and let \(S \subseteq Q'\) satisfy \(\left|S\right| > 1\). If \(I \in S {\setminus } \{ \Omega ^c\}\) and \(\eta > 0\), then \(A_{S, \eta } \subseteq B_\eta (\partial I)\).

Proof

The claim is trivially true if \(A_{S,\eta }\) is empty; henceforth, we assume that it is not. Let \(x \in A_{S, \eta }\). We distinguish between two cases: either \(x \in I\) or \(x \notin I\). Suppose that \(x \in I\). As \(\left|S\right| > 1\) and \(N(x,\eta ) = S\) there exists some \(J \in Q' {\setminus } \{I\}\) such that \(B_\eta (x) \cap J \ne \emptyset \). Actually, as the closure of the interior of J is J, we have \(B_\eta (x) \cap {{\,\mathrm{int}\,}}(J) \ne \emptyset \). In this case, let \(y \in B_\eta (x) \cap {{\,\mathrm{int}\,}}(J)\); as J and I are convex elements of a measurable partition we have \(J \cap I \subseteq \partial J \cap \partial I\) and so \(y \notin I\). Alternatively, if \(x \notin I\), then let \(y \in B_\eta (x) \cap I\), which is non-empty by a similar argument. In both cases, we have a pair of points in \(A_{S, \eta }\): one in I and the other not. Recalling that elements of \(Q'\) have non-empty interior and then considering the line segment that joins x and y, it is straightforward to verify that there exists some \(z \in \partial I\) on this line segment. Clearly, \(\left|x-z\right| < \eta \) and so \(x \in B_\eta (\partial I)\), which completes the proof. \(\square \)

Lemma A.6

Let \(Q \in \mathcal {P}(\kappa )\). If \(\eta > 0\) and \(S \subseteq Q'\) is such that \(\left|S\right| > 1\) and \(m(A_{S,\eta }) > 0\), then for each \(f \in \mathbb {V}_{\beta }(\Omega )\) we have

$$\begin{aligned} \begin{aligned} M_S(f)&\le \max _{\begin{array}{c} J,K \in S \\ J\ne K \end{array}}\Bigg (\int _J \frac{{\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(J)}\;\mathrm{d}x \\&\quad +\, \int _K \frac{ {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(K)}\;\mathrm{d}x \Bigg ). \end{aligned} \end{aligned}$$

Proof

Let \(J,K \in S\) be partition elements satisfying

$$\begin{aligned} M_S(f) = \left|\hat{f}_{J} - \hat{f}_{K}\right|. \end{aligned}$$

We may assume that \(J \ne K\), as this case does not contribute to the maximum. Let us first consider the case where \(\Omega ^c \in \{J,K\}\); without loss of generality, let \(K = \Omega ^c\). For every \(j \in J\), we have \(J \subseteq B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\). Hence, as \(B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j) \cap \Omega ^c\) has non-empty interior, and therefore nonzero measure, for almost every \(j, j' \in J\) and \(k' \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j) \cap \Omega ^c\) we have

$$\begin{aligned} \left|f(j')\right| = \left|f(j') - f(k')\right| \le {\text {osc}} \left( f,B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\right) . \end{aligned}$$

Taking expectations with respect to \(j'\) and j over J yields

$$\begin{aligned} M_S(f) = \left|\hat{f}_{J}\right| \le \int _J \frac{{\text {osc}} \left( f,B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(J)}\;\mathrm{d}x, \end{aligned}$$

which implies the required conclusion. Alternatively suppose that neither J nor K is equal to \(\Omega ^c\). Fix \(j \in J\) and \(k \in K\). For any \(j' \in J\), we have \(\left|j - j'\right| \le {{\,\mathrm{diam}\,}}(Q)\) and so \(j' \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\). Similarly, for every \(k' \in K\) we have \(k' \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(k)\). As \(m(A_{S,\eta }) > 0\), we know that \(A_{S,\eta } \ne \emptyset \). For \(z \in A_{S,\eta }\), the intersection \(B_\eta (z) \cap J\) is non-empty and so \(z \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\). Similarly, \(z \in B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(k)\). Hence, for almost every \(j' \in J\) and \(k' \in K\),

$$\begin{aligned} \begin{aligned} \left|f(j') - f(k')\right|&\le \left|f(j') - f(z)\right| + \left|f(k') - f(z)\right|\\&\le {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\right) + {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(k)\right) . \end{aligned} \end{aligned}$$

By taking the expectation with respect to \(j'\) over J and \(k'\) over K, we find

$$\begin{aligned} \left|\hat{f}_{J} - \hat{f}_{K}\right| \le {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(j)\right) + {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(k)\right) . \end{aligned}$$
(51)

Since (51) holds for every \(j \in J\) and \(k \in K\), we may take expectations again to obtain

$$\begin{aligned} \left|\hat{f}_{J} - \hat{f}_{K}\right| \le \int _J \frac{{\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(J)} \;\mathrm{d}x + \int _K \frac{{\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(K)} \;\mathrm{d}x. \end{aligned}$$

We obtain the required inequality by taking the maximum over all distinct pairs of \(J,K \in S\). \(\square \)

Combining the previous two results yields the “small” \(\eta \) bound of Lemma A.7.

Lemma A.7

Let \(Q \in \mathcal {P}(\kappa )\). If \({{\,\mathrm{diam}\,}}(Q) < \eta _0\), \(\eta \in (0, \eta _0 - {{\,\mathrm{diam}\,}}(Q)]\) and \(f \in \mathbb {V}_{\beta }(\Omega )\), then

$$\begin{aligned} \eta ^{-\beta } \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \,\mathrm{d}x \le \left( \max _{I \in Q} \frac{m(B_\eta (\partial I))}{m(I)} \right) \left( 1 + \frac{{{\,\mathrm{diam}\,}}(Q)}{\eta }\right) ^\beta \left|f\right|_\beta . \end{aligned}$$

Proof

By Lemma A.3, we have

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x = \sum _{S \subseteq Q' } m(A_{S,\eta }) M_{S}(f). \end{aligned}$$
(52)

Let \(G = \{ S \subseteq Q' : \left|S\right|> 1, m(A_{S,\eta }) > 0 \}\). Since \(m(A_{S,\eta }) M_{S}(f) = 0\) if \(S \notin G\), we may restrict the sum in (52):

$$\begin{aligned} \int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x = \sum _{S \in G} m(A_{S,\eta }) M_{S}(f). \end{aligned}$$
(53)

Applying Lemma A.6 to each of the terms in (53) yields

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^d} {\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \;\mathrm{d}x \\&\begin{aligned}&\quad \le \sum _{S \in G} m(A_{S,\eta }) \max _{J,K \in S, J \ne K} \biggl ( \int _J \frac{{\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(J)} \;\mathrm{d}x \\&\qquad +\, \int _K \frac{{\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) }{m(K)} \;\mathrm{d}x \biggr ). \end{aligned} \end{aligned} \end{aligned}$$
(54)

By rearranging the terms in (54) to sum over elements of Q, we obtain

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^d}{\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \mathrm {d}x \\&\quad \le \sum _{I \in Q} \frac{\sum _{S \in G, I \in S} m(A_{S,\eta })}{m(I)} \int _I {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x \\&\quad \le \left( \max _{I \in Q} \frac{\sum _{ S\in G, I \in S} m(A_{S,\eta })}{m(I)} \right) \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x, \end{aligned} \end{aligned}$$
(55)

where we omit the case of \(I = \Omega ^c\), as it does not contribute to the sum. Since the sets \(\{A_{S,\eta }\}_{S \subseteq Q'}\) are disjoint, Lemma A.5 implies that

$$\begin{aligned} \sum _{ S \in G, I \in S } m(A_{S,\eta }) \le m(B_\eta (\partial I)). \end{aligned}$$

Thus,

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^d}&{\text {osc}} \left( \mathbb {E}_Q f, B_\eta (x)\right) \mathrm {d}x \\&\le \left( \max _{I \in Q} \frac{m(B_\eta (\partial I))}{m(I)} \right) \int _{\mathbb {R}^d} {\text {osc}} \left( f, B_{\eta + {{\,\mathrm{diam}\,}}(Q)}(x)\right) \;\mathrm{d}x. \end{aligned} \end{aligned}$$

The required inequality follows by applying the definition of \(\left|\cdot \right|_\beta \). \(\square \)

Before proving Proposition A.2, we require a technical lemma for an inequality from convex geometry. For \(U,V \subseteq \mathbb {R}^d\) the Minkowski sum of U and V is denoted by \(U + V\) and equal to \(\{u + v : u \in U, v \in V\}\); for basic properties, we refer to [19, Section 6.1].

Lemma A.8

If I is a compact convex polytope, then for every \(\eta > 0\) we have

$$\begin{aligned} m(B_\eta (\partial I) \cap I) \le m(B_\eta (\partial I) \cap I^c). \end{aligned}$$

Proof

Let \(m_{d-1}\) denote \(d-1\)-dimensional Lebesgue measure. By Steiner’s formula [19, Theorem 6.6], there exists a polynomial \(p_I\) with positive coefficients and of degree d such that \(m(B_\eta (I)) = p_I(\eta )\). The constant coefficient of \(p_I\) is clearly m(I), while the coefficient of the linear term is \(m_{d-1}(\partial I)\), i.e. the surface area of I. Note that \(m(B_\eta (\partial I) \cap I^c) = p_I(\eta ) - m(I)\). We will prove that \(m(B_\eta (\partial I) \cap I) \le \eta m_{d-1}(\partial I)\). Since \(p_I\) has degree greater than or equal to 2 and positive coefficients, it follows that

$$\begin{aligned} m(B_\eta (\partial I) \cap I) \le \eta m_{d-1}(\partial I) \le p_I(\eta ) - m(I) \le m(B_\eta (\partial I) \cap I^c), \end{aligned}$$

and would therefore complete the proof.

Let \(\mathcal {F}(I)\) denote the set of set of facets of I. Clearly \(m_{d-1}(\partial I) = \sum _{F \in \mathcal {F}(I)} m_{d-1}(F)\). Let \(y \in B_\eta (\partial I) \cap I\) and denote by F the (possibly not unique) facet in \(\mathcal {F}(I)\) that minimises the distance from y to \(\partial I\). Let x be the point on F attaining said minimum. If \(x-y\) is not normal to F, then the ball \(B_{\left|x-y\right|}(y)\) is not tangent to F and so there exists \(z \in B_{\left|x-y\right|}(y) \cap I^c\). The line segment from y to z must intersect \(\partial I\) at some point that is strictly closer to y than x, which contradicts x minimising the distance from y to \(\partial I\). Hence, \(x-y\) must be normal to F and so \(y \in F + [0,\eta ] \times n_F\), where \(n_F\) is the inward-facing unit normal vector to F. This implies that

$$\begin{aligned} B_\eta (\partial I) \cap I \subseteq \bigcap _{F \in \mathcal {F}(I)} F + [0,\eta ] \times n_F \end{aligned}$$

and so \(m(B_\eta (\partial I) \cap I) \le \eta \sum _{F \in \mathcal {F}(I)} m_{d-1}(F) = \eta m_{d-1}(\partial I)\) as required. \(\square \)

The proof of Proposition A.2

We begin by bounding

$$\begin{aligned} \sup _{\left|f\right|_\beta = 1} \left|\mathbb {E}_Q f\right|_{\beta ,\eta _0 - {{\,\mathrm{diam}\,}}(Q)}. \end{aligned}$$

Let \(b: \mathbb {R}\rightarrow \mathbb {R}\) be defined by

$$\begin{aligned} b(\eta ) = \left( 1 + \frac{{{\,\mathrm{diam}\,}}(Q)}{\eta }\right) ^\beta . \end{aligned}$$

By taking the minimum of the bounds in Lemmas A.4 and A.7, we have

$$\begin{aligned} \left|\mathbb {E}_Q f\right|_{\beta ,\eta _0 - {{\,\mathrm{diam}\,}}(Q)} \le \sup _{0 < \eta \le \eta _0} \min \left\{ \max _{I \in Q} \frac{m(B_\eta (\partial I))}{m(I)}, 1\right\} b(\eta ) \left|f\right|_\beta . \end{aligned}$$
(56)

We will now bound \(\max _{I \in Q} \frac{m(B_\eta (\partial I))}{m(I)}\). Lemma A.8 implies that for any \(I \in Q\) we have

$$\begin{aligned} \frac{m(B_{\eta }(\partial I))}{m(I)}\le \frac{2m(B_{\eta }(\partial I) \cap I^c)}{m(I)}. \end{aligned}$$

Noting that \(B_{\eta }(\partial I) \cap I^c = B_{\eta }(I) {\setminus } I\) and \(B_\eta (I) = I + (\eta /2)B_{1}(0)\), we obtain

$$\begin{aligned} \frac{m(B_{\eta }(\partial I))}{m(I)} \le 2 \frac{m(I + (\eta /2)B_{1}(0)) -m(I)}{m(I)}. \end{aligned}$$
(57)

Let \(B_I\) be a ball inscribed in I of maximal volume. Then, by scaling and possibly translating by some vector \(v_I \in \mathbb {R}^d\), we find that \(B_{1}(0) \subseteq \frac{2}{{{\,\mathrm{diam}\,}}(B_I)} I + v_I\). Consequently

$$\begin{aligned} m\left( I + \frac{\eta }{2}B_{1}(0)\right) \le m\left( I + \frac{\eta }{{{\,\mathrm{diam}\,}}(B_I)}I\right) = \left( 1 + \frac{\eta }{{{\,\mathrm{diam}\,}}(B_I)} \right) ^d m(I). \end{aligned}$$
(58)

Applying (58) to (57), and recalling that \(1/ {{\,\mathrm{diam}\,}}(B_I) \le \kappa /{{\,\mathrm{diam}\,}}(Q)\) as \(Q \in \mathcal {P}(\kappa )\), we find that

$$\begin{aligned} \frac{m(B_{\eta }(\partial I))}{m(I)} \le 2 \left( 1 + \frac{\eta }{{{\,\mathrm{diam}\,}}(B_I)} \right) ^d - 2 \le 2 \left( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 2. \end{aligned}$$
(59)

By applying (59) to (56), we obtain

$$\begin{aligned} \begin{aligned}&|\mathbb {E}_Q f |_{\beta ,\eta _0 - {{\,\mathrm{diam}\,}}(Q)} \\&\quad \le \sup _{0 < \eta \le \eta _0} \min \left\{ \left( 2 \left( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 2\right) b(\eta ), b(\eta )\right\} \left|f\right|_\beta . \end{aligned} \end{aligned}$$
(60)

It is clear that b is monotonically decreasing. Note that

$$\begin{aligned} \begin{aligned}&2 \Bigg (\Bigg ( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \Bigg )^d - 1\Bigg )b(\eta ) \\&\quad = 2 \eta ^{-\beta }\left( \left( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 1\right) (\eta + {{\,\mathrm{diam}\,}}(Q))^\beta . \end{aligned} \end{aligned}$$
(61)

The map \(\eta \mapsto (\eta + {{\,\mathrm{diam}\,}}(Q))^\beta \) is clearly monotonically increasing on \((0, \eta _0]\). As \(d \ge 2\) and \(\beta \in (0, 1]\), the map

$$\begin{aligned} \eta \mapsto \eta ^{-\beta } \left( \left( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 1\right) \end{aligned}$$

is monotonically increasing on \((0, \eta _0]\) too. Thus, the left-hand side of (61) is monotonically increasing. Since both b and the left-hand side of (61) are continuous on \((0, \eta _0]\), b is monotonically decreasing and the left-hand side of (61) is monotonically increasing, it follows that if \(\eta ' \in (0, \infty )\) solves

$$\begin{aligned} 2 \left( 1 + \frac{\kappa \eta '}{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 2 = 1, \end{aligned}$$
(62)

then

$$\begin{aligned} \sup _{0 < \eta \le \eta _0} \min \left\{ \left( 2 \left( 1 + \frac{\kappa \eta }{{{\,\mathrm{diam}\,}}(Q)} \right) ^d - 2\right) b(\eta ), b(\eta )\right\} \le b(\eta '). \end{aligned}$$

Solving (62) yields

$$\begin{aligned} \frac{{{\,\mathrm{diam}\,}}(Q)}{\eta '} = \frac{\kappa }{\root d \of {\frac{3}{2}} - 1}. \end{aligned}$$

By substituting this into (60), we obtain the bound

$$\begin{aligned} \left|\mathbb {E}_Q f\right|_{\beta ,\eta _0 - {{\,\mathrm{diam}\,}}(Q)} \le \left( 1 + \frac{\kappa }{\root d \of {\frac{3}{2}} - 1} \right) ^\beta \left|f\right|_\beta . \end{aligned}$$

Applying Lemma A.1 yields the required bound. \(\square \)

With Proposition A.2 in hand, we may now prove Lemmas 5.12 and 5.13.

Proof of Lemma 5.12

As \(\lim _{\epsilon \rightarrow 0} {{\,\mathrm{diam}\,}}(Q_\epsilon ) = 0\) there exists \(\epsilon _2 >0\) such that for every \(\epsilon \in (0, \epsilon _2]\) we have \({{\,\mathrm{diam}\,}}(Q_\epsilon ) < \eta _0\) and

$$\begin{aligned} 1 + {{\,\mathrm{diam}\,}}(Q_\epsilon )/(\eta _0 - {{\,\mathrm{diam}\,}}(Q_\epsilon )) < \sqrt{d/(d-1)}. \end{aligned}$$

By [7, Section 8.5, page 236], this implies

$$\begin{aligned} S(1, 1 + {{\,\mathrm{diam}\,}}(Q_\epsilon )/(\eta _0 - {{\,\mathrm{diam}\,}}(Q_\epsilon ))) = S(\eta _0 - {{\,\mathrm{diam}\,}}(Q_\epsilon ), \eta _0) \le 2d. \end{aligned}$$

The desired conclusion follows by Proposition A.2. \(\square \)

Proof of Lemma 5.13

If \({{\,\mathrm{diam}\,}}(Q) < \eta _0\), then \(\left|\mathbb {E}_Q\right|_\beta < \infty \) by Proposition A.2. Alternatively, if \({{\,\mathrm{diam}\,}}(Q) \ge \eta _0\), then repeatedly applying Lemma A.1 yields

$$\begin{aligned}\begin{aligned} \left|\mathbb {E}_Q\right|_\beta&= \sup _{\left|f\right|_\beta \le 1 } \left|\mathbb {E}_Q f\right|_\beta \\&\le \sup \{ \left|\mathbb {E}_Q f\right|_{\beta ,2 {{\,\mathrm{diam}\,}}(Q)} : \left|f\right|_{\beta ,2{{\,\mathrm{diam}\,}}(Q)} \le S(\eta _0, 2{{\,\mathrm{diam}\,}}(Q)) \}\\&\le S(\eta _0, 2{{\,\mathrm{diam}\,}}(Q)) \left|\mathbb {E}_Q\right|_{\beta ,2 {{\,\mathrm{diam}\,}}(Q)}, \end{aligned} \end{aligned}$$

which is finite by Proposition A.2 applied to the seminorm \(\left|\cdot \right|_{\beta ,2 {{\,\mathrm{diam}\,}}(Q)}\) (i.e. when \(\eta _0 = 2 {{\,\mathrm{diam}\,}}(Q)\)). In either case, we have \(\left|\mathbb {E}_Q\right|_\beta < \infty \) and so, as \(\left|\mathbb {E}_Q \right|_{L^1} =1\), we have \(\left\| \mathbb {E}_Q\right\| _\beta < \infty \) too. As Q partitions \(\Omega \), for every \(f \in \mathbb {V}_{\beta }(\Omega )\) the support of \(\mathbb {E}_Q f\) is a subset of \(\Omega \). Hence \(\mathbb {E}_Q f \in \mathbb {V}_{\beta }(\Omega )\) for every \(f \in \mathbb {V}_{\beta }(\Omega )\) and so \(\mathbb {E}_Q \in L(\mathbb {V}_{\beta }(\Omega ))\). \(\square \)

Code

1.1 Variance

figure c

1.2 Rate Function

figure d
figure e
figure f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crimmins, H., Froyland, G. Stability and Approximation of Statistical Limit Laws for Multidimensional Piecewise Expanding Maps. Ann. Henri Poincaré 20, 3113–3161 (2019). https://doi.org/10.1007/s00023-019-00822-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00822-2

Navigation