Skip to main content
Log in

Thermal State with Quadratic Interaction

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We consider the perturbative construction, proposed in Fredenhagen and Lindner (Commun Math Phys 332:895, 2014), for a thermal state \(\Omega _{\beta ,\lambda V\{f\}}\) for the theory of a real scalar Klein–Gordon field \(\phi \) with interacting potential \(V\{f\}\). Here, f is a space-time cut-off of the interaction V, and \(\lambda \) is a perturbative parameter. We assume that V is quadratic in the field \(\phi \) and we compute the adiabatic limit \(f\rightarrow 1\) of the state \(\Omega _{\beta ,\lambda V\{f\}}\). The limit is shown to exist; moreover, the perturbative series in \(\lambda \) sums up to the thermal state for the corresponding (free) theory with potential V. In addition, we exploit the same methods to address a similar computation for the non-equilibrium steady state (NESS) Ruelle (J Stat Phys 98:57–75, 2000) recently constructed in Drago et al. (Commun Math Phys 357:267, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Altherr, T.: Infrared problem in \(g\phi ^4\) theory at finite temperature. Phys. Lett. 238(24), 360–366 (1990)

    Article  Google Scholar 

  2. Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 9(1), 165–209 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aste, A.: Resummation of mass terms in perturbative massless quantum field theory. Lett. Math. Phys. 81(1), 77–92 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bahns, D., Rejzner, K.: The Quantum Sine Gordon model in perturbative AQFT. Commun. Math. Phys. 357, 421 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bär, C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333(3), 1585 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bär, C., Fredenhagen, K.: Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  7. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Bär, C., et al. (eds.) Global Differential Geometry, pp. 359–400. Springer, Berlin (2012)

    Chapter  Google Scholar 

  8. Bernal, A.N., Sanchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bernal, A.N., Sanchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77, 183 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bóna, M.: Combinatorics of Permutations. Discrete Mathematics and Its Applications, 2nd edn. Taylor & Francis, London (2012)

    Google Scholar 

  11. Bratteli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209–238 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bratteli, O., Robinson, D.W.: Operator Algebras And Quantum Statistical Mechanics. 1. C* And W* Algebras, Symmetry Groups, Decomposition Of States. Springer, New York (1979) 500 P (Texts and Monographs in Physics)

  13. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics. 2. Equilibrium States. Models in Quantum Statistical Mechanics. Springer, New York (1979) 518 P (Texts and Monographs In Physics)

  14. Brennecke, F., Dütsch, M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J.: Advances in Algebraic Quantum Field Theory. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  16. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31 (2003)

    Article  ADS  MATH  Google Scholar 

  18. Buchholz, D., Roberts, J.E.: Bounded perturbations of dynamics. Commun. Math. Phys. 49(2), 161–177 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chilian, B., Fredenhagen, K.: The Time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dappiaggi, C., Drago, N.: Constructing Hadamard states via an extended Møller operator. Lett. Math. Phys. 106, 1587 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dito, J.: Star-product approach to quantum field theory: the free scalar field. Lett. Math. Phys. 20, 125–134 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dito, J.: Star-products and nonstandard quantization for Klein–Gordon equation. J. Math. Phys. 33(2), 791–801 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Derezinski, J., Jaksic, V., Pillet, C.-A.: Perturbation theory of W*-dynamics, Liouvilleans and KMS-states. Rev. Math. Phys. 15, 447–489 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Donald, M.J.: Relative Hamiltonians which are not bounded from above. J. Funct. Anal. 91, 143 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Drago, N., Faldino, F., Pinamonti, N.: On the stability of KMS states in perturbative algebraic quantum field theories. Commun. Math. Phys. 357, 267 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Drago, N., Faldino, F., Pinamonti, N.: Relative entropy and entropy production for equilibrium states in pAQFT. Ann. Henri Poincaré 19, 3289 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Drago, N., Gérard, C.: On the adiabatic limit of Hadamard states. Lett. Math. Phys. 107, 1409 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri Poincaré 18, 807 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Drago, N., Murro, S.: A new class of Fermionic Projectors: Møller operators and mass oscillation properties. Lett. Math. Phys. 107, 2433 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Dütsch, M., Fredenhagen, K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219, 5 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Dütsch, M., Fredenhagen, K.: Perturbative algebraic field theory and deformation quantization. Field Inst. Commun. 30, 151–160 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action ward identity. Rev. Math. Phys. 16, 1291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Epstein, H., Glaser, V.: The rôle of locality in perturbation theory. Ann. Inst. Henri Poincaré Sect. A XIX(3), 211 (1973)

    MATH  Google Scholar 

  34. Fewster, C., Ford, L.H., Roman, T.A.: Probability distributions for quantum stress tensors in four dimensions. Phys. Rev. D 85, 125038 (2012)

    Article  ADS  Google Scholar 

  35. Fewster, C., Siemssen, D.: Enumerating permutations by their run structure. Electron. J. Comb. 21(4), 4–18 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quantum Gravity 30, 235027 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and renormalized Hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Fredenhagen, K., Rejzner, K.: Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Fredenhagen, K., Rejzner, K.: QFT on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity structure of the two point function in quantum field theory in curved space-time II. Ann. Phys. 136, 243 (1981)

    Article  ADS  MATH  Google Scholar 

  41. Fulling, S.A., Sweeney, M., Wald, R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime. Commun. Math. Phys. 63, 257–264 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Haag, R., Hugenholtz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Haag, R., Kastler, D., Trych-Pohlmeyer, E.B.: Stability and equilibrium states. Commun. Math. Phys. 38, 173–193 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  45. Hack, T.-P., Verch, R.: Non-equilibrium steady states for the interacting Klein–Gordon field in 1+3 dimensions. arXiv:1806.00504 [math-ph]

  46. Hawkins, E., Rejzner, K.: The star product in interacting quantum field theory. arXiv:1612.09157 [math-ph]

  47. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223, 289 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231, 309 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Hollands, S., Wald, R.M.: Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1985)

    MATH  Google Scholar 

  51. Kay, B.S.: The principle of locality and quantum field theory on (non-globally hyperbolic) curved spacetimes. Rev. Math. Phys. 4(1), 167–195 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Khavkine, I., Moretti, V.: Analytic dependence is an unnecessary requirement in renormalization of locally covariant QFT. Commun. Math. Phys. 344, 581 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Khavkine, I., Melati, A., Moretti, V.: On Wick polynomials of boson fields in locally covariant algebraic QFT. arXiv:1710.01937 [math-ph]

  54. Le Bellac, M.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  55. Peierls, R.: The commutation laws of relativistic field theory. Proc. R. Soc. Lond. A 214, 143 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Radzikowski, M.J., Verch, R.: A local to global singularity theorem for quantum field theory on curved space-time. Commun. Math. Phys. 180, 1 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Ruelle, D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sakai, S.: Perturbations of KMS states in \(C^*\)-dynamical systems (Generalization of the absence theorem of phase transition to continuous quantum systems). Contemp. Math. 62, 187 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lecture Notes in Physics, vol. 11. Springer, Berlin (1971)

    Google Scholar 

  63. Steinmann, O.: Perturbative quantum field theory at positive temperature: an axiomatic approach. Commun. Math. Phys. 170, 405–416 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, 1st edn. The University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  65. Weinberg, S.: The Quantum Theory of Field, vol. 2. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Claudio Dappiaggi, Federico Faldino, Klaus Fredenhagen, Thomas-Paul Hack and Nicola Pinamonti, for enlightening discussions and comments on a preliminary version of this paper. This work was supported by the National Group of Mathematical Physics (GNFMINdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Drago.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drago, N. Thermal State with Quadratic Interaction. Ann. Henri Poincaré 20, 905–927 (2019). https://doi.org/10.1007/s00023-018-0739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0739-6

Navigation