Skip to main content
Log in

The Chirality Theorem

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

A Correction to this article was published on 10 August 2018

This article has been updated

Abstract

We show how chirality of the weak interactions stems from string independence in the string-local formalism of quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 10 August 2018

    After formula (2.7a) of the paper, we omitted to indicate that its right-hand side, as a distribution in p, cannot be restricted to the zero-mass shell.

References

  1. Socrates: “Would a sensible husbandman, who has seeds which he cares for and which he wishes to bear fruit, plant them with serious purpose in the heat of summer in some garden of Adonis...?”

  2. Quigg, C.: Unanswered questions in the electroweak theory. Ann. Rev. Nucl. Part. Sci. 59, 505–555 (2009)

    Article  ADS  Google Scholar 

  3. Lynn, B. W., and Starkman, G. D.: Global \(SU(3)_C \times SU(2)_L \times U(1)_Y\) linear sigma model with Standard Model fermions: axial-vector Ward Takahashi identities, the absence of Brout–Englert–Higgs mass fine tuning, and the decoupling of certain heavy particles, due to the Goldstone theorem. arXiv:1509.06199

  4. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  5. Marshak, R.E.: Conceptual Foundations of Modern Particle Physics. World Scientific, Singapore (1993)

    Book  Google Scholar 

  6. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields from Wigner representations. Phys. Lett. B 596, 156–162 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Mandelstam, S.: Quantum electrodynamics without potentials. Ann. Phys. (NY) 19, 1–24 (1962)

    Article  ADS  MATH  Google Scholar 

  9. Steinmann, O.: Perturbative QED in terms of gauge invariant fields. Ann. Phys. (NY) 157, 232–254 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Schroer, B.: Beyond gauge theory: positivity and causal localization in the presence of vector mesons. Eur. Phys. J. C 76, 378 (2016)

    Article  ADS  Google Scholar 

  11. Weinberg, S.: The Quantum Theory of Fields I. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  12. Nikolov, N.M., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in configuration space. Rev. Math. Phys. 26, 1430002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Várilly, J.C., Gracia-Bondía, J.M.: Stora’s fine notion of divergent amplitudes. Nucl. Phys. B 912, 28–37 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Yngvason, J.: Zero-mass infinite spin representations of the Poincaré group and quantum field theory. Commun. Math. Phys. 18, 195–203 (1970)

    Article  ADS  MATH  Google Scholar 

  16. Iverson, G.J., Mack, G.: Quantum fields and interactions of massless particles: the continuous spin case. Ann. Phys. (NY) 64, 211–253 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Rehren, K.-H.: Pauli–Lubanski limit and stress-energy tensor for infinite-spin fields. JHEP 1711, 130–164 (2017)

  18. Peskin, M.: Standard Model and symmetry breaking. Talk given at the Latin American conference on High Energy Physics: Particles and Strings II, Havana (2016)

  19. Dütsch, M., Scharf, G.: Perturbative gauge invariance: the electroweak theory. Ann. Phys. (Leipzig) 8, 359–387 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Aste, A., Scharf, G., Dütsch, M.: Perturbative gauge invariance: electroweak theory II. Ann. Phys. (Leipzig) 8, 389–404 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Scharf, G.: Gauge Field Theories: Spin One and Spin Two. Dover, Mineola (2016)

    Google Scholar 

  22. Stora, R.: From Koszul complexes to gauge fixing. In: ’t Hooft, G. (ed.) 50 Years of Yang-Mills Theory, pp. 137–167. World Scientific, Singapore (2005)

  23. Mund, J.: String-localized quantum fields, modular localization, and gauge theories. In: Sidoravičius, V. (ed.) New Trends in Mathematical Physics, pp. 495–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Duch, P.: Massless fields and adiabatic limit in quantum field theory. Ph. D. thesis, Jagiellonian University, Cracow, summer 2017; arXiv:1709.09907

  25. Leibbrandt, G.: Introduction to noncovariant gauges. Rev. Mod. Phys. 59, 1067–1119 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Figueiredo, F.: Lightlike string-localized free quantum fields for massive bosons. M. Sc. thesis, Universidade Federal de Juiz de Fora, (2017)

  27. Plaschke, M., Yngvason, J.: Massless, string localized quantum fields for any helicity. J. Math. Phys. 53, 042301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Mund, J., de Oliveira, E.T.: String-localized free vector and tensor potentials for massive particles with any spin: I. Bosons. Commun. Math. Phys. 355, 1243–1282 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mund, J., Rehren, K.-H., Schroer, B.: Helicity decoupling in the massless limit of massive tensor fields. Nucl. Phys. B 924, 699–727 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  31. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré A 19, 211–295 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  33. Zichichi, A.L., et al.: Special section on symmetries and gauge invariance. In: Zichichi, A.L. (ed.) Gauge Interactions, pp. 725–740. Plenum Press, New York (1984)

    Chapter  Google Scholar 

  34. Okun, L.B.: From pions to wions. In The Relations of Particles, pp. 31–45. World Scientific, Singapore (1991)

  35. Scheck, F.: Electroweak and Strong Interactions: Phenomenology, Concepts, Models. Springer, Berlin (2012)

    Book  Google Scholar 

  36. Nagashima, Y.: Elementary Particle Physics 2: Foundations of the Standard Model. Wiley, Singapore (2013)

    Book  MATH  Google Scholar 

  37. Mund, J.: String-localized massive vector bosons in interaction. In preparation

  38. Mund, J., Schroer, B.: How the Higgs potential got its shape. Forthcoming

  39. Cornwall, J.M., Levin, D.N., Tiktopoulos, G.: Uniqueness of spontaneously broken gauge theories. Phys. Rev. Lett. 30, 1268–1270 (1973)

    Article  ADS  Google Scholar 

  40. Cornwall, J.M., Levin, D.N., Tiktopoulos, G.: Derivation of gauge invariance from high-energy unitarity bounds on the S-matrix. Phys. Rev. D 10, 1145–1167 (1974)

    Article  ADS  Google Scholar 

  41. Schwartz, M.D.: Quantum Field Theory and the Standard Model. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  42. Thomas, L.J., Wichmann, E.H.: On the causal structure of Minkowski spacetime. J. Math. Phys. 38, 5044–5086 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. W. A. Benjamin, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Mund.

Additional information

Communicated by Karl Henning-Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracia-Bondía, J.M., Mund, J. & Várilly, J.C. The Chirality Theorem. Ann. Henri Poincaré 19, 843–874 (2018). https://doi.org/10.1007/s00023-017-0637-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0637-3

Navigation